scholarly journals Multiple b-values improve discrimination of cortical gray matter regions using diffusion MRI: an experimental validation with a data-driven approach

Author(s):  
Tara Ganepola ◽  
Yoojin Lee ◽  
Daniel C. Alexander ◽  
Martin I. Sereno ◽  
Zoltan Nagy

Abstract Objective To investigate whether varied or repeated b-values provide better diffusion MRI data for discriminating cortical areas with a data-driven approach. Methods Data were acquired from three volunteers at 1.5T with b-values of 800, 1400, 2000 s/mm2 along 64 diffusion-encoding directions. The diffusion signal was sampled from gray matter in seven regions of interest (ROIs). Rotational invariants of the local diffusion profile were extracted as features that characterize local tissue properties. Random forest classification experiments assessed whether classification accuracy improved when data with multiple b-values were used over repeated acquisition of the same (1400 s/mm2) b-value to compare all possible pairs of the seven ROIs. Three data sets from the Human Connectome Project were subjected to similar processing and analysis pipelines in eight ROIs. Results Three different b-values showed an average improvement in correct classification rates of 5.6% and 4.6%, respectively, in the local and HCP data over repeated measurements of the same b-value. The improvement in correct classification rate reached as high as 16% for individual binary classification experiments between two ROIs. Often using only two of the available three b-values were adequate to make such an improvement in classification rates. Conclusion Acquisitions with varying b-values are more suitable for discriminating cortical areas.

2019 ◽  
Author(s):  
J-Donald Tournier ◽  
Daan Christiaens ◽  
Jana Hutter ◽  
Anthony N. Price ◽  
Lucilio Cordero-Grande ◽  
...  

AbstractDiffusion MRI has the potential to provide important information about the connectivity and microstructure of the human brain during normal and abnormal development, non-invasively and in vivo. Recent developments in MRI hardware and reconstruction methods now permit the acquisition of large amounts of data within relatively short scan times. This makes it possible to acquire more informative multi-shell data, with diffusion-sensitisation applied along many directions over multiple b-value shells. Such schemes are characterised by the number of shells acquired, and the specific b-value and number of directions sampled for each shell. However, there is currently no clear consensus as to how to optimise these parameters. In this work, we propose a means of optimising multi-shell acquisition schemes by estimating the information content of the diffusion MRI signal, and optimising the acquisition parameters for sensitivity to the observed effects, in a manner agnostic to any particular diffusion analysis method that might subsequently be applied to the data. This method was used to design the acquisition scheme for the neonatal diffusion MRI sequence used in the developing Human Connectome Project, which aims to acquire high quality data and make it freely available to the research community. The final protocol selected by the algorithm, and currently in use within the dHCP, consists of b = 0, 400, 1000, 2600 s/mm2 with 20, 64, 88 & 128 DW directions per shell respectively.HighlightsA data driven method is presented to design multi-shell diffusion MRI acquisition schemes (b-values and no. directions).This method optimises the multi-shell scheme for maximum sensitivity to the information content in the signal.When applied in neonates, the data suggest that a b=0 + 3 shell strategy is appropriate


2020 ◽  
Vol 33 (9) ◽  
Author(s):  
Jacques‐Donald Tournier ◽  
Daan Christiaens ◽  
Jana Hutter ◽  
Anthony N. Price ◽  
Lucilio Cordero‐Grande ◽  
...  

2012 ◽  
Author(s):  
Michael Ghil ◽  
Mickael D. Chekroun ◽  
Dmitri Kondrashov ◽  
Michael K. Tippett ◽  
Andrew Robertson ◽  
...  

Author(s):  
Ernest Pusateri ◽  
Bharat Ram Ambati ◽  
Elizabeth Brooks ◽  
Ondrej Platek ◽  
Donald McAllaster ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1571 ◽  
Author(s):  
Jhonatan Camacho Navarro ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica ◽  
Jabid Quiroga

Sign in / Sign up

Export Citation Format

Share Document