head motion
Recently Published Documents


TOTAL DOCUMENTS

726
(FIVE YEARS 181)

H-INDEX

47
(FIVE YEARS 7)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Isabelle Mackrous ◽  
Jérome Carriot ◽  
Kathleen E. Cullen

AbstractThe vestibular system detects head motion to coordinate vital reflexes and provide our sense of balance and spatial orientation. A long-standing hypothesis has been that projections from the central vestibular system back to the vestibular sensory organs (i.e., the efferent vestibular system) mediate adaptive sensory coding during voluntary locomotion. However, direct proof for this idea has been lacking. Here we recorded from individual semicircular canal and otolith afferents during walking and running in monkeys. Using a combination of mathematical modeling and nonlinear analysis, we show that afferent encoding is actually identical across passive and active conditions, irrespective of context. Thus, taken together our results are instead consistent with the view that the vestibular periphery relays robust information to the brain during primate locomotion, suggesting that context-dependent modulation instead occurs centrally to ensure that coding is consistent with behavioral goals during locomotion.


2021 ◽  
Author(s):  
Sandika Biswas ◽  
Sanjana Sinha ◽  
Dipanjan Das ◽  
Brojeshwar Bhowmick

2021 ◽  
Vol 7 (12) ◽  
pp. 265
Author(s):  
Severin Ionut-Cristian ◽  
Dobrea Dan-Marius

Human activity recognition and classification are some of the most interesting research fields, especially due to the rising popularity of wearable devices, such as mobile phones and smartwatches, which are present in our daily lives. Determining head motion and activities through wearable devices has applications in different domains, such as medicine, entertainment, health monitoring, and sports training. In addition, understanding head motion is important for modern-day topics, such as metaverse systems, virtual reality, and touchless systems. The wearability and usability of head motion systems are more technologically advanced than those which use information from a sensor connected to other parts of the human body. The current paper presents an overview of the technical literature from the last decade on state-of-the-art head motion monitoring systems based on inertial sensors. This study provides an overview of the existing solutions used to monitor head motion using inertial sensors. The focus of this study was on determining the acquisition methods, prototype structures, preprocessing steps, computational methods, and techniques used to validate these systems. From a preliminary inspection of the technical literature, we observed that this was the first work which looks specifically at head motion systems based on inertial sensors and their techniques. The research was conducted using four internet databases—IEEE Xplore, Elsevier, MDPI, and Springer. According to this survey, most of the studies focused on analyzing general human activity, and less on a specific activity. In addition, this paper provides a thorough overview of the last decade of approaches and machine learning algorithms used to monitor head motion using inertial sensors. For each method, concept, and final solution, this study provides a comprehensive number of references which help prove the advantages and disadvantages of the inertial sensors used to read head motion. The results of this study help to contextualize emerging inertial sensor technology in relation to broader goals to help people suffering from partial or total paralysis of the body.


2021 ◽  
Vol 1 ◽  
Author(s):  
Hannah Eichhorn ◽  
Andreea-Veronica Vascan ◽  
Martin Nørgaard ◽  
Andreas H. Ellegaard ◽  
Jakob M. Slipsager ◽  
...  

Head motion is one of the major reasons for artefacts in Magnetic Resonance Imaging (MRI), which is especially challenging for children who are often intimidated by the dimensions of the MR scanner. In order to optimise the MRI acquisition for children in the clinical setting, insights into children's motion patterns are essential. In this work, we analyse motion data from 61 paediatric patients. We compare structural MRI data of children imaged with and without general anaesthesia (GA), all scanned using the same hybrid PET/MR scanner. We analyse several metrics of motion based on the displacement relative to a reference, decompose the transformation matrix into translation and rotation, as well as investigate whether different regions in the brain are affected differently by the children's motion. Head motion for children without GA was significantly higher, with a median of the mean displacements of 2.19 ± 0.93 mm (median ± standard deviation) during 41.7±7.5 min scans; however, even anaesthetised children showed residual head motion (mean displacement of 1.12±0.35 mm). For both patient groups translation along the z-axis (along the scanner bore) was significantly larger in absolute terms (GA / no GA: 0.87±0.29/0.92 ± 0.49 mm) compared to the other directions. Considering directionality, both patient groups were moving in negative z-direction and thus, out of the scanner. The awake children additionally showed significantly more nodding rotation (0.33±0.20°). In future studies as well as in the clinical setting, these predominant types of motion need to be taken into consideration to limit artefacts and reduce re-scans due to poor image quality.


2021 ◽  
Author(s):  
Mehmet N. Akcay ◽  
Burak Kara ◽  
Saba Ahsan ◽  
Ali C. Begen ◽  
Igor Curcio ◽  
...  
Keyword(s):  

Author(s):  
Md. Abu Obaidah ◽  
Mahmudunnabi ◽  
Mohammad Monirujjaman Khan
Keyword(s):  

Author(s):  
Alejandro Rubio Barañano ◽  
Muhammad Faisal ◽  
Brendan T. Barrett ◽  
John G. Buckley

AbstractViewing one’s smartphone whilst walking commonly leads to a slowing of walking. Slowing walking speed may occur because of the visual constraints related to reading the hand-held phone whilst in motion. We determine how walking-induced phone motion affects the ability to read on-screen information. Phone-reading performance (PRP) was assessed whilst participants walked on a treadmill at various speeds (Slow, Customary, Fast). The fastest speed was repeated, wearing an elbow brace (Braced) or with the phone mounted stationary (Fixed). An audible cue (‘text-alert’) indicated participants had 2 s to lift/view the phone and read aloud a series of digits. PRP was the number of digits read correctly. Each condition was repeated 5 times. 3D-motion analyses determined phone motion relative to the head, from which the variability in acceleration in viewing distance, and in the point of gaze in space in the up-down and right-left directions were assessed. A main effect of condition indicated PRP decreased with walking speed; particularly so for the Braced and Fixed conditions (p = 0.022). Walking condition also affected the phone’s relative motion (p < 0.001); post-hoc analysis indicated that acceleration variability for the Fast, Fixed and Braced conditions were increased compared to that for Slow and Customary speed walking (p ≤ 0.05). There was an inverse association between phone acceleration variability and PRP (p = 0.02). These findings may explain why walking speed slows when viewing a hand-held phone: at slower speeds, head motion is smoother/more regular, enabling the motion of the phone to be coupled with head motion, thus making fewer demands on the oculomotor system. Good coupling ensures that the retinal image is stable enough to allow legibility of the information presented on the screen.


2021 ◽  
Author(s):  
Bin Su ◽  
Yuting Wen ◽  
Yanyan Liu ◽  
Shu Liao ◽  
Jianwei Fu ◽  
...  

2021 ◽  
Author(s):  
Carolina Badke D'Andrea ◽  
Jeanette K. Kenley ◽  
David F. Montez ◽  
Amy E. Mirro ◽  
Ryland L. Miller ◽  
...  

Imaging the infant brain with MRI has improved our understanding of early stages of neurodevelopment. However, head motion during MRI acquisition is detrimental to both functional and structural MRI scan quality. Though infants are commonly scanned while asleep, they commonly exhibit motion during scanning, causing data loss. Our group has shown that providing MRI technicians with real-time motion estimates via Framewise Integrated Real-Time MRI Monitoring (FIRMM) software helps obtain high-quality, low motion fMRI data. By estimating head motion in real time and displaying motion metrics to the MR technician during an fMRI scan, FIRMM can improve scanning efficiency. Hence, we compared average framewise displacement (FD), a proxy for head motion, and the amount of usable fMRI data (FD ≤ 0.2mm) in infants scanned with (n = 407) and without FIRMM (n = 295). Using a mixed-effects model, we found that the addition of FIRMM to current state-of-the-art infant scanning protocols significantly increased the amount of usable fMRI data acquired per infant, demonstrating its value for research and clinical infant neuroimaging.


Sign in / Sign up

Export Citation Format

Share Document