Cannibalism and interspecific predation of the phytoseiid mite, Amblyseius swirskii

2004 ◽  
Vol 77 (1) ◽  
pp. 23-25 ◽  
Author(s):  
A. H. Rasmy ◽  
G. M. Abou-El-Ella ◽  
H. E. Hussein
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Inga C. Christiansen ◽  
Sandra Szin ◽  
Peter Schausberger

Abstract Learning is changed behavior following experience, and ubiquitous in animals including plant-inhabiting predatory mites (Phytoseiidae). Learning has many benefits but also incurs costs, which are only poorly understood. Here, we addressed learning, especially its costs, in the generalist predatory mite Amblyseius swirskii, a biocontrol agent of several herbivores, which can also survive on pollen. The goals of our research were (1) to scrutinize if A. swirskii is able to learn during early life in foraging contexts and, if so, (2) to determine the costs of early learning. In the experiments, we used one difficult-to-grasp prey, i.e., thrips, and one easy-to-grasp prey, i.e., spider mites. Our experiments show that A. swirskii is able to learn during early life. Adult predators attacked prey experienced early in life (i.e., matching prey) more quickly than they attacked unknown (i.e., non-matching) prey. Furthermore, we observed both fitness benefits and operating (physiological) costs of early learning. Predators receiving the matching prey produced the most eggs, whereas predators receiving the non-matching prey produced the least. Thrips-experienced predators needed the longest for juvenile development. Our findings may be used to enhance A. swirskii’s efficacy in biological control, by priming young predators on a specific prey early in life.


Author(s):  
Azadeh Farazmand ◽  
Masood Amir-Maafi

Abstract In this research, functional responses of Amblyseius swirskii Athias-Henriot preying on different Tetranychus urticae Koch nymphal densities (2, 4, 8, 16, 32, 64, and 128) were studied at eight constant temperatures (15, 20, 25, 27.5, 30, 32.5, 35 and 37.5°C) in a circular Petri dish (3-cm diameter × 1-cm height) under lab conditions. At all temperatures, the logistic regression showed a type II functional response. A nonlinear relationship was found between temperature and attack rate and the reciprocal of handling time. The reciprocal of handling time decreased exponentially with increasing temperature. In contrast, the attack rate grew rapidly with increasing temperatures up to an optimum, showing a decreasing trend at higher temperatures. In order to quantify the functional response of A. swirskii over a broad range of temperatures and to gain a better estimation of attack rate and handling time, a temperature-settled functional response equation was suited to our data. Our model showed that the number of prey consumed increased with rising prey density. Also, the predation rates increased with increasing temperatures but decreased at extremely high temperatures. Based on our model, the predation rate begins at the lower temperature threshold (11.73°C) and reaches its peak at upper temperature threshold (29.43°C). The coefficient of determination (R2) of the random predator model was 0.99 for all temperatures. The capability of A. swirskii to search and consume T. urticae over a wide range of temperatures makes it a good agent for natural control of T. urticae in greenhouses.


2011 ◽  
Vol 125 (2) ◽  
pp. 158 ◽  
Author(s):  
A. David M. Latham ◽  
Stan Boutin

A breeding male Gray Wolf, Canis lupus, equipped with a GPS collar was documented going to the den site of another Gray Wolf pack. This trip was coincident with an attack on the den of the other pack and the occurrence of a dead and partially consumed Gray Wolf pup at the same location. We present two possible explanations - interspecific predation and non-parental infanticide - to account for this observation. Because the Gray Wolf with the GPS collar and his mate were first-time breeders and were attempting to establish a territory space of their own, we speculate that, based on the available evidence, this observation most likely represents a case of non-parental infanticide that fits the predictions of the resource competition hypothesis.


2012 ◽  
Vol 58 (0) ◽  
pp. 66-72
Author(s):  
Shin-ichiro Okazaki ◽  
Katsunori Tamashima ◽  
Kimihiro Amekawa ◽  
Mitsutoshi Momoshita ◽  
Masami Takagi

Sign in / Sign up

Export Citation Format

Share Document