Time series analysis and long short-term memory neural network to predict landslide displacement

Landslides ◽  
2019 ◽  
Vol 16 (4) ◽  
pp. 677-694 ◽  
Author(s):  
Beibei Yang ◽  
Kunlong Yin ◽  
Suzanne Lacasse ◽  
Zhongqiang Liu
2020 ◽  
Vol 1 (2) ◽  
pp. 71
Author(s):  
Kristina Sanjaya Putri ◽  
Siana Halim

Foreign exchange is one type of investment, which its goal is to minimize losses that could occur. Forecasting is a technique to minimize losses when investing. The purpose of this study is to make foreign exchange predictions using a time series analysis called Auto-Regressive Integrated Moving Average (ARIMA) and Long Short-term memory methods. This study uses the daily EUR / USD exchange rates from 2014 to March 2020. The data are used as the model to predict the value of the foreign exchange market in April 2020. The model obtained will be used for predictions in April 2020, where the RMSE values obtained from time series analysis (ARIMA) with a window size of 100 days and LSTM sequentially as follows 0.00527 and 0.00509. LSTM produces lower RMSE values than ARIMA. LSTM has better prediction results; this is because the LSTM has the ability to learn so that it can utilize a large amount of data while ARIMA cannot use it. ARIMA does not have the ability to learn even though given a large amount of data it gives poor forecasting results. The ARIMA prediction is the same as the values of the previous day.


2021 ◽  
Vol 42 (18) ◽  
pp. 6921-6944
Author(s):  
Yi Chen ◽  
Yi He ◽  
Lifeng Zhang ◽  
Youdong Chen ◽  
Hongyu Pu ◽  
...  

2018 ◽  
Vol 7 (4.15) ◽  
pp. 25 ◽  
Author(s):  
Said Jadid Abdulkadir ◽  
Hitham Alhussian ◽  
Muhammad Nazmi ◽  
Asim A Elsheikh

Forecasting time-series data are imperative especially when planning is required through modelling using uncertain knowledge of future events. Recurrent neural network models have been applied in the industry and outperform standard artificial neural networks in forecasting, but fail in long term time-series forecasting due to the vanishing gradient problem. This study offers a robust solution that can be implemented for long-term forecasting using a special architecture of recurrent neural network known as Long Short Term Memory (LSTM) model to overcome the vanishing gradient problem. LSTM is specially designed to avoid the long-term dependency problem as their default behavior. Empirical analysis is performed using quantitative forecasting metrics and comparative model performance on the forecasted outputs. An evaluation analysis is performed to validate that the LSTM model provides better forecasted outputs on Standard & Poor’s 500 Index (S&P 500) in terms of error metrics as compared to other forecasting models.  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sujan Ghimire ◽  
Zaher Mundher Yaseen ◽  
Aitazaz A. Farooque ◽  
Ravinesh C. Deo ◽  
Ji Zhang ◽  
...  

AbstractStreamflow (Qflow) prediction is one of the essential steps for the reliable and robust water resources planning and management. It is highly vital for hydropower operation, agricultural planning, and flood control. In this study, the convolution neural network (CNN) and Long-Short-term Memory network (LSTM) are combined to make a new integrated model called CNN-LSTM to predict the hourly Qflow (short-term) at Brisbane River and Teewah Creek, Australia. The CNN layers were used to extract the features of Qflow time-series, while the LSTM networks use these features from CNN for Qflow time series prediction. The proposed CNN-LSTM model is benchmarked against the standalone model CNN, LSTM, and Deep Neural Network models and several conventional artificial intelligence (AI) models. Qflow prediction is conducted for different time intervals with the length of 1-Week, 2-Weeks, 4-Weeks, and 9-Months, respectively. With the help of different performance metrics and graphical analysis visualization, the experimental results reveal that with small residual error between the actual and predicted Qflow, the CNN-LSTM model outperforms all the benchmarked conventional AI models as well as ensemble models for all the time intervals. With 84% of Qflow prediction error below the range of 0.05 m3 s−1, CNN-LSTM demonstrates a better performance compared to 80% and 66% for LSTM and DNN, respectively. In summary, the results reveal that the proposed CNN-LSTM model based on the novel framework yields more accurate predictions. Thus, CNN-LSTM has significant practical value in Qflow prediction.


Sign in / Sign up

Export Citation Format

Share Document