A Musculoskeletal Modeling Approach for Estimating Anterior Cruciate Ligament Strains and Knee Anterior–Posterior Shear Forces in Stop-Jumps Performed by Young Recreational Female Athletes

2012 ◽  
Vol 41 (2) ◽  
pp. 338-348 ◽  
Author(s):  
Julia Kar ◽  
Peter M. Quesada
2020 ◽  
Vol 8 (11) ◽  
pp. 232596712096318
Author(s):  
Jusung Lee ◽  
Prabhat Pathak ◽  
Siddhartha Bikram Panday ◽  
Jeheon Moon

Background: Although there is a higher prevalence of noncontact anterior cruciate ligament (ACL) injuries during a direction diversion maneuver (DDM), no previous studies have reported how foot-planting strategies affect ACL loading. Purpose: To investigate the effect of foot-planting strategies on ACL loading in women during a DDM task using a musculoskeletal modeling approach. Study Design: Descriptive laboratory study. Methods: A total of 13 female participants performed a DDM task, which involved running at 4.5 ± 0.2 m/s and turning left at 35° to 55° under a foot-planting strategy in 3 directions: neutral, toe-in, and toe-out. Kinematic and kinetic data were measured with the use of a 3-dimensional motion capture system and force platform to calculate variables such as joint angle, shear force, and moment. Anterior ACL and posterior ACL forces were extracted using musculoskeletal modeling. Results: The peak anterior ACL force was significantly larger for the toe-out condition (31.29 ± 4.02 N/body weight [BW]) compared with the toe-in condition (25.43 ± 5.68 N/BW) ( P = .047), with no significant difference in the neutral condition. The toe-out condition had a higher knee valgus angle (2.98° ± 4.20°; P = .041), knee shear force (10.20 ± 1.69 N/BW; P = .009), and knee internal rotation moment (–0.18 ± 0.16 N·m/BW×height; P = .012) than the toe-in and neutral conditions. Conclusion: Through musculoskeletal modeling, we were able to conclude that the toe-out condition during the DDM might result in a higher risk of ACL injuries. Athletes and sports practitioners should avoid the toe-out foot-planting strategy when participating in a sporting activity. Clinical Relevance: Based on these findings, medical professionals and athletic coaches can gain knowledge on how foot-planting strategy affects ACL loading. Understanding the actual cause of an ACL injury can be useful for designing preventive training programs or strategies to decrease the risk of such injuries.


2019 ◽  
Vol 28 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Jonathan Sinclair ◽  
Paul J. Taylor

Context: Prophylactic knee bracing is extensively utilized in athletic populations to reduce the high risk from knee injuries, but its role in the attenuation of anterior cruciate ligament (ACL) pathologies is not well understood. Objective: The aim of this investigation was to explore the effects of a prophylactic knee sleeve on ACL loading parameters linked to the etiology of injury in recreational athletes. Setting: Laboratory. Design: Repeated measures. Participants: Thirteen healthy male recreational athletes. Intervention: Participants performed run, cut, and single-leg hop movements under 2 conditions; prophylactic knee sleeve and no sleeve. Main Outcome Measures: Biomechanical data were captured using an 8-camera 3D motion capture system and a force platform. Peak ACL force, average ACL load rate, and instantaneous ACL load rate were quantified using a musculoskeletal modeling approach. Results: The results showed that both average and instantaneous ACL load rates were significantly reduced when wearing the knee sleeve in the hop (sleeve = 612.45/1286.39 N/kg/s and no sleeve = 743.91/1471.42 N/kg/s) and cut (sleeve = 222.55/1058.02 N/kg/s and no sleeve = 377.38/1183.01 N/kg/s) movements. Conclusions: Given the biomechanical association between ACL loading and the etiology of ACL injuries, it is proposed that athletes may be able to attenuate their risk from injury during cut and hop movements through utilization of a prophylactic knee sleeve.


2005 ◽  
Vol 33 (4) ◽  
pp. 492-501 ◽  
Author(s):  
Timothy E. Hewett ◽  
Gregory D. Myer ◽  
Kevin R. Ford ◽  
Robert S. Heidt ◽  
Angelo J. Colosimo ◽  
...  

Background Female athletes participating in high-risk sports suffer anterior cruciate ligament injury at a 4- to 6-fold greater rate than do male athletes. Hypothesis Prescreened female athletes with subsequent anterior cruciate ligament injury will demonstrate decreased neuromuscular control and increased valgus joint loading, predicting anterior cruciate ligament injury risk. Study Design Cohort study; Level of evidence, 2. Methods There were 205 female athletes in the high-risk sports of soccer, basketball, and volleyball prospectively measured for neuromuscular control using 3-dimensional kinematics (joint angles) and joint loads using kinetics (joint moments) during a jump-landing task. Analysis of variance as well as linear and logistic regression were used to isolate predictors of risk in athletes who subsequently ruptured the anterior cruciate ligament. Results Nine athletes had a confirmed anterior cruciate ligament rupture; these 9 had significantly different knee posture and loading compared to the 196 who did not have anterior cruciate ligament rupture. Knee abduction angle (P <. 05) at landing was 8° greater in anterior cruciate ligament-injured than in uninjured athletes. Anterior cruciate ligament-injured athletes had a 2.5 times greater knee abduction moment (P <. 001) and 20% higher ground reaction force (P <. 05), whereas stance time was 16% shorter; hence, increased motion, force, and moments occurred more quickly. Knee abduction moment predicted anterior cruciate ligament injury status with 73% specificity and 78% sensitivity; dynamic valgus measures showed a predictive r2 of 0.88. Conclusion Knee motion and knee loading during a landing task are predictors of anterior cruciate ligament injury risk in female athletes. Clinical Relevance Female athletes with increased dynamic valgus and high abduction loads are at increased risk of anterior cruciate ligament injury. The methods developed may be used to monitor neuromuscular control of the knee joint and may help develop simpler measures of neuromuscular control that can be used to direct female athletes to more effective, targeted interventions.


Sign in / Sign up

Export Citation Format

Share Document