Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation

2012 ◽  
Vol 118 (1) ◽  
pp. 25-47 ◽  
Author(s):  
Chaohua Jia ◽  
Bing-Yu Zhang
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
N. Smaoui ◽  
B. Chentouf ◽  
A. Alalabi

Abstract In this paper, we study the modelling and nonlinear boundary stabilization problem of the modified generalized Korteweg–de Vries–Burgers equation (MGKdVB) when the spatial domain is $[0,1]$ [ 0 , 1 ] . First, the MGKdVB equation is derived using the long-wave approximation and perturbation method. Then, two nonlinear boundary controllers are proposed for this equation and the $L^{2} $ L 2 -global exponential stability of the solution is shown. Numerical simulations are given to illustrate the efficiency of the developed control schemes.


2017 ◽  
Vol 95 (12) ◽  
pp. 1234-1238 ◽  
Author(s):  
A.M. Belounis ◽  
S. Kessal

We study the effects of the gain and the loss of polaritons on the wave propagation in polariton condensates. This system is described by a modified Gross–Pitaevskii equation. In the case of small damping, we use the reductive perturbation method to transform this equation; we get a modified Burgers equation in the dispersionless limit and a damped Korteweg – de Vries equation in a more general case. We demonstrate that the shock wave occurrence depends on the gain and the loss of polaritons in the dispersionless polariton condensate. The resolution of the damped Korteweg – de Vries equation shows that the soliton behaves like a damped wave in the case of a constant damping. Based on an asymptotic solution, the survival time and the distance traveled by this soliton are evaluated. We solve the damped Korteweg – de Vries equation and the modified Gross–Pitaevskii numerically to validate the analytical calculations and discuss especially the soliton propagation in the system.


2020 ◽  
Vol 2020 (2) ◽  
pp. 85-98
Author(s):  
A.B. Khasanov ◽  
T.J. Allanazarova
Keyword(s):  
De Vries ◽  

Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Rosenau-Korteweg-de Vries equation describes the wave-wave and wave-wall interactions. In this paper, we prove that, as the diffusion parameter is near zero, it coincides with the Korteweg-de Vries equation. The proof relies on deriving suitable a priori estimates together with an application of the Aubin-Lions Lemma.


Sign in / Sign up

Export Citation Format

Share Document