scholarly journals Convergence of Time-Dependent Turing Structures to a Stationary Solution

2012 ◽  
Vol 123 (1) ◽  
pp. 31-42 ◽  
Author(s):  
A. G. Ramm ◽  
V. Volpert
1980 ◽  
Vol 17 (04) ◽  
pp. 1083-1086
Author(s):  
Prajneshu

The exact time-dependent solution as well as the stationary solution of the logistic model for population growth with varying carrying capacity is worked out in both the Stratonovich and Ito calculi by solving the forward Kolmogorov equation.


1980 ◽  
Vol 17 (4) ◽  
pp. 1083-1086 ◽  
Author(s):  
Prajneshu

The exact time-dependent solution as well as the stationary solution of the logistic model for population growth with varying carrying capacity is worked out in both the Stratonovich and Ito calculi by solving the forward Kolmogorov equation.


Author(s):  
YIQUN MA

For a long time, the development of dynamical theory for HEER has been stagnated for several reasons. Although the Bloch wave method is powerful for the understanding of physical insights of electron diffraction, particularly electron transmission diffraction, it is not readily available for the simulation of various surface imperfection in electron reflection diffraction since it is basically a method for bulk materials and perfect surface. When the multislice method due to Cowley & Moodie is used for electron reflection, the “edge effects” stand firmly in the way of reaching a stationary solution for HEER. The multislice method due to Maksym & Beeby is valid only for an 2-D periodic surface.Now, a method for solving stationary solution of HEER for an arbitrary surface is available, which is called the Edge Patching method in Multislice-Only mode (the EPMO method). The analytical basis for this method can be attributed to two important characters of HEER: 1) 2-D dependence of the wave fields and 2) the Picard iteractionlike character of multislice calculation due to Cowley and Moodie in the Bragg case.


Sign in / Sign up

Export Citation Format

Share Document