Kernel selection in multi-class support vector machines and its consequence to the number of ties in majority voting method

2011 ◽  
Vol 40 (3) ◽  
pp. 213-230 ◽  
Author(s):  
Henry Joutsijoki ◽  
Martti Juhola
2019 ◽  
Vol 11 (21) ◽  
pp. 2546 ◽  
Author(s):  
Razieh Pourdarbani ◽  
Sajad Sabzi ◽  
Mario Hernández-Hernández ◽  
José Luis Hernández-Hernández ◽  
Ginés García-Mateos ◽  
...  

Color segmentation is one of the most thoroughly studied problems in agricultural applications of remote image capture systems, since it is the key step in several different tasks, such as crop harvesting, site specific spraying, and targeted disease control under natural light. This paper studies and compares five methods to segment plum fruit images under ambient conditions at 12 different light intensities, and an ensemble method combining them. In these methods, several color features in different color spaces are first extracted for each pixel, and then the most effective features are selected using a hybrid approach of artificial neural networks and the cultural algorithm (ANN-CA). The features selected among the 38 defined channels were the b* channel of L*a*b*, and the color purity index, C*, from L*C*h. Next, fruit/background segmentation is performed using five classifiers: artificial neural network-imperialist competitive algorithm (ANN-ICA); hybrid artificial neural network-harmony search (ANN-HS); support vector machines (SVM); k nearest neighbors (kNN); and linear discriminant analysis (LDA). In the ensemble method, the final class for each pixel is determined using the majority voting method. The experiments showed that the correct classification rate for the majority voting method excluding LDA was 98.59%, outperforming the results of the constituent methods.


2019 ◽  
Vol 52 (29) ◽  
pp. 192-198
Author(s):  
Muzaffer Ay ◽  
David Stenger ◽  
Max Schwenzer ◽  
Dirk Abel ◽  
Thomas Bergs

2008 ◽  
Vol 3 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Reshma Khemchandani ◽  
Jayadeva ◽  
Suresh Chandra

2014 ◽  
Author(s):  
Gokmen Zararsiz ◽  
Dincer Goksuluk ◽  
Selcuk Korkmaz ◽  
Vahap Eldem ◽  
Izzet Parug Duru ◽  
...  

Background RNA sequencing (RNA-Seq) is a powerful technique for transcriptome profiling of the organisms that uses the capabilities of next-generation sequencing (NGS) technologies. Recent advances in NGS let to measure the expression levels of tens to thousands of transcripts simultaneously. Using such information, developing expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of disease. Here, we present the bagging support vector machines (bagSVM), a machine learning approach and bagged ensembles of support vector machines (SVM), for classification of RNA-Seq data. The bagSVM basically uses bootstrap technique and trains each single SVM separately; next it combines the results of each SVM model using majority-voting technique. Results We demonstrate the performance of the bagSVM on simulated and real datasets. Simulated datasets are generated from negative binomial distribution under different scenarios and real datasets are obtained from publicly available resources. A deseq normalization and variance stabilizing transformation (vst) were applied to all datasets. We compared the results with several classifiers including Poisson linear discriminant analysis (PLDA), single SVM, classification and regression trees (CART), and random forests (RF). In slightly overdispersed data, all methods, except CART algorithm, performed well. Performance of PLDA seemed to be best and RF as second best for very slightly and substantially overdispersed datasets. While data become more spread, bagSVM turned out to be the best classifier. In overall results, bagSVM and PLDA had the highest accuracies. Conclusions According to our results, bagSVM algorithm after vst transformation can be a good choice of classifier for RNA-Seq datasets mostly for overdispersed ones. Thus, we recommend researchers to use bagSVM algorithm for the purpose of classification of RNA-Seq data. PLDA algorithm should be a method of choice for slight and moderately overdispersed datasets. An R/BIOCONDUCTOR package MLSeq with a vignette is freely available at http://www.bioconductor.org/packages/2.14/bioc/html/MLSeq.html Keywords: Bagging, machine learning, RNA-Seq classification, support vector machines, transcriptomics


Sign in / Sign up

Export Citation Format

Share Document