majority voting method
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 8)

H-INDEX

4
(FIVE YEARS 2)

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1376
Author(s):  
Yung-Fa Huang ◽  
Chuan-Bi Lin ◽  
Chien-Min Chung ◽  
Ching-Mu Chen

In recent years, privacy awareness is concerned due to many Internet services have chosen to use encrypted agreements. In order to improve the quality of service (QoS), the network encrypted traffic behaviors are classified based on machine learning discussed in this paper. However, the traditional traffic classification methods, such as IP/ASN (Autonomous System Number) analysis, Port-based and deep packet inspection, etc., can classify traffic behavior, but cannot effectively handle encrypted traffic. Thus, this paper proposed a hybrid traffic classification (HTC) method based on machine learning and combined with IP/ASN analysis with deep packet inspection. Moreover, the majority voting method was also used to quickly classify different QoS traffic accurately. Experimental results show that the proposed HTC method can effectively classify different encrypted traffic. The classification accuracy can be further improved by 10% with majority voting as K = 13. Especially when the networking data are using the same protocol, the proposed HTC can effectively classify the traffic data with different behaviors with the differentiated services code point (DSCP) mark.


2020 ◽  
Vol 176 ◽  
pp. 105643 ◽  
Author(s):  
Razieh Pourdarbani ◽  
Sajad Sabzi ◽  
Davood Kalantari ◽  
Jitendra Paliwal ◽  
Brahim Benmouna ◽  
...  

2020 ◽  
Vol 26 (6) ◽  
pp. 720-733
Author(s):  
Jedrzej Biedrzycki ◽  
Robert Burduk

Plethora of ensemble techniques have been implemented and studied in order to achieve better classification results than base classifiers. In this paper an algorithm for integration of decision trees is proposed, which means that homogeneous base classifiers will be used. The novelty of the presented approach is the usage of the simultaneous distance of the object from the decision boundary and the center of mass of objects belonging to one class label in order to determine the score functions of base classifiers. This means that the score function assigned to the class label by each classifier depends on the distance of the classified object from the decision boundary and from the centroid. The algorithm was evaluated using an open-source benchmarking dataset. The results indicate an improvement in the classification quality in comparison to the referential method - majority voting method.


Author(s):  
Dilara Gerdan ◽  
Abdullah Beyaz ◽  
Mustafa Vatandaş

Colour is an essential parameter at product quality control stages, and finally, it is necessary for the consumer marketing decision. It is possible to damage the products during the process from collection to storage. Also, it is a well-known condition, cold environmental conditions protect fruits from deformations negative effects, but most of the time, most of the consumers keep the fruits at room temperature in open packs during the consumption process. Also, this condition affects the product storage time. In this study, it is aimed that to determine the behaviours of the fruits in room temperature and humidity conditions. For this aim the colour change of the damaged pears were determined, in another term, colour change value from red to green and yellow to blue at the damaged pears were determined with lightness values by using image analysis technique and analysed with data mining methods. For this purpose, 100 “Akça” pear and 100 “Deveci” local pear cultivar used for experiments. Fruits were equally damaged by using a pendulum mechanism. The damaged fruits were kept at room temperature. Colour change areas on fruits were evaluated with X-rite Ci60 spectrophotometer, and the hardness of fruits was measured by using a fruit penetrometer. The colour (L, a, b) and ΔE values were analysed for the fruit cultivars. The relationship between fruit hardness and colour change were also demonstrated. The predictions were done supervised machine learning algorithms (Decision Tree and Neural Networks with Meta-Learning Techniques; Majority Voting and Random Forest) by using KNIME Analytics software. The classifier performance (accuracy, error, F-Measure, Cohen's Kappa, recall, precision, true positive (TP), false positive (FP), true negative (TN), false negative (FN) values were given at the conclusion section of the research. The best prediction were found at the Majority Voting method (MAVL) 98.458 % success given with 70% partitioning.


2020 ◽  
Vol 10 (1) ◽  
pp. 383 ◽  
Author(s):  
Sajad Sabzi ◽  
Razieh Pourdarbani ◽  
Davood Kalantari ◽  
Thomas Panagopoulos

The first step in identifying fruits on trees is to develop garden robots for different purposes such as fruit harvesting and spatial specific spraying. Due to the natural conditions of the fruit orchards and the unevenness of the various objects throughout it, usage of the controlled conditions is very difficult. As a result, these operations should be performed in natural conditions, both in light and in the background. Due to the dependency of other garden robot operations on the fruit identification stage, this step must be performed precisely. Therefore, the purpose of this paper was to design an identification algorithm in orchard conditions using a combination of video processing and majority voting based on different hybrid artificial neural networks. The different steps of designing this algorithm were: (1) Recording video of different plum orchards at different light intensities; (2) converting the videos produced into its frames; (3) extracting different color properties from pixels; (4) selecting effective properties from color extraction properties using hybrid artificial neural network-harmony search (ANN-HS); and (5) classification using majority voting based on three classifiers of artificial neural network-bees algorithm (ANN-BA), artificial neural network-biogeography-based optimization (ANN-BBO), and artificial neural network-firefly algorithm (ANN-FA). Most effective features selected by the hybrid ANN-HS consisted of the third channel in hue saturation lightness (HSL) color space, the second channel in lightness chroma hue (LCH) color space, the first channel in L*a*b* color space, and the first channel in hue saturation intensity (HSI). The results showed that the accuracy of the majority voting method in the best execution and in 500 executions was 98.01% and 97.20%, respectively. Based on different performance evaluation criteria of the classifiers, it was found that the majority voting method had a higher performance.


2019 ◽  
Vol 11 (21) ◽  
pp. 2546 ◽  
Author(s):  
Razieh Pourdarbani ◽  
Sajad Sabzi ◽  
Mario Hernández-Hernández ◽  
José Luis Hernández-Hernández ◽  
Ginés García-Mateos ◽  
...  

Color segmentation is one of the most thoroughly studied problems in agricultural applications of remote image capture systems, since it is the key step in several different tasks, such as crop harvesting, site specific spraying, and targeted disease control under natural light. This paper studies and compares five methods to segment plum fruit images under ambient conditions at 12 different light intensities, and an ensemble method combining them. In these methods, several color features in different color spaces are first extracted for each pixel, and then the most effective features are selected using a hybrid approach of artificial neural networks and the cultural algorithm (ANN-CA). The features selected among the 38 defined channels were the b* channel of L*a*b*, and the color purity index, C*, from L*C*h. Next, fruit/background segmentation is performed using five classifiers: artificial neural network-imperialist competitive algorithm (ANN-ICA); hybrid artificial neural network-harmony search (ANN-HS); support vector machines (SVM); k nearest neighbors (kNN); and linear discriminant analysis (LDA). In the ensemble method, the final class for each pixel is determined using the majority voting method. The experiments showed that the correct classification rate for the majority voting method excluding LDA was 98.59%, outperforming the results of the constituent methods.


2019 ◽  
Vol 11 (5) ◽  
pp. 534 ◽  
Author(s):  
Bing Tu ◽  
Nanying Li ◽  
Leyuan Fang ◽  
Danbing He ◽  
Pedram Ghamisi

Spectral features cannot effectively reflect the differences among the ground objects and distinguish their boundaries in hyperspectral image (HSI) classification. Multi-scale feature extraction can solve this problem and improve the accuracy of HSI classification. The Gaussian pyramid can effectively decompose HSI into multi-scale structures, and efficiently extract features of different scales by stepwise filtering and downsampling. Therefore, this paper proposed a Gaussian pyramid based multi-scale feature extraction (MSFE) classification method for HSI. First, the HSI is decomposed into several Gaussian pyramids to extract multi-scale features. Second, we construct probability maps in each layer of the Gaussian pyramid and employ edge-preserving filtering (EPF) algorithms to further optimize the details. Finally, the final classification map is acquired by a majority voting method. Compared with other spectral-spatial classification methods, the proposed method can not only extract the characteristics of different scales, but also can better preserve detailed structures and the edge regions of the image. Experiments performed on three real hyperspectral datasets show that the proposed method can achieve competitive classification accuracy.


2015 ◽  
Vol 27 (04) ◽  
pp. 1550040 ◽  
Author(s):  
Jorge Juan Suárez-Cuenca ◽  
Wei Guo ◽  
Qiang Li

The purpose of this study was to investigate the usefulness of various classifier combination methods for improving the performance of a computer-aided diagnosis (CAD) system for pulmonary nodule detection in computed tomography (CT). We employed 85 CT scans with 110 nodules in the publicly available Lung Image Database Consortium (LIDC) dataset. We first applied our CAD scheme trained previously to the LIDC cases for identifying initial nodule candidates, and extracting 18 features for each nodule candidate. We used eight individual classifiers for false positives (FPs) reduction, including linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), Naïve Bayes, simple logistic, artificial neural network (ANN) and support vector machines (SVMs) with three different kernels. Five classifier combination methods were then employed to integrate the outputs of the eight individual classifiers for improving detection performance. The five combination methods included two supervised (a likelihood ratio (LR) method and a probability method based on the output scores of the eight individual classifiers) and three unsupervised ones (the sum, the product and the majority voting of the output scores from the eight individual classifiers). Leave-one-case-out approach was employed to train and test individual classifiers and supervised combination methods. At a sensitivity of 80%, the numbers of FPs per CT scan for the eight individual classifiers were 6.1 for LDA, 19.9 for QDA, 10.8 for Naïve Bayes, 8.4 for simple logistic, 8.6 for ANN, 23.7 for SVM-dot, 17.0 for SVM-poly, and 23.4 for SVM-anova; the numbers of FPs per CT scan for the five combination methods were 3.3 for the majority voting method, 5.0 for the sum, 4.6 for the product, 65.7 for the LR and 3.9 for the probability method. Compared to the best individual classifier, the majority voting method reduced 45% of FPs at 80% sensitivity. The performance of our CAD can be improved by combining multiple classifiers. The majority voting method achieved higher performance levels than other combination methods and all individual classifiers.


Sign in / Sign up

Export Citation Format

Share Document