scholarly journals The Tilting Tensor Product Theorem and Decomposition Numbers for Symmetric Groups

2007 ◽  
Vol 10 (4) ◽  
pp. 307-314
Author(s):  
Anton Cox
2020 ◽  
pp. 1-24
Author(s):  
MATTHEW WESTAWAY

Steinberg’s tensor product theorem shows that for semisimple algebraic groups, the study of irreducible representations of higher Frobenius kernels reduces to the study of irreducible representations of the first Frobenius kernel. In the preceding paper in this series, deforming the distribution algebra of a higher Frobenius kernel yielded a family of deformations called higher reduced enveloping algebras. In this paper, we prove that the Steinberg decomposition can be similarly deformed, allowing us to reduce representation theoretic questions about these algebras to questions about reduced enveloping algebras. We use this to derive structural results about modules over these algebras. Separately, we also show that many of the results in the preceding paper hold without an assumption of reductivity.


2000 ◽  
Vol 228 (1) ◽  
pp. 119-142 ◽  
Author(s):  
Gordon James ◽  
Adrian Williams

2001 ◽  
Vol 130 (3) ◽  
pp. 427-439
Author(s):  
GEOFFREY M. L. POWELL

Let [Fscr ] be the category of functors from the category of finite-dimensional [ ]2-vector spaces to [ ]2-vector spaces. The concept of &∇tilde;-nilpotence in the category [Fscr ] is used to define a ‘dimension’ for the category of analytic functors which has good properties. In particular, the paper shows that the tensor product F [otimes ] G of analytic functors which are respectively &∇tilde;s and &∇tilde;t nilpotent is &∇tilde;s+t − 1-nilpotent.The notion of &∇tilde;-nilpotence is extended to define a dimension in the category of unstable modules over the mod 2 Steenrod algebra, which is shown to coincide with the transcendence degree of an unstable Noetherian algebra over the Steenrod algebra.


2011 ◽  
Vol 61 (6) ◽  
pp. 2361-2403 ◽  
Author(s):  
V. Balaji ◽  
A.J. Parameswaran

2018 ◽  
Vol 6 ◽  
Author(s):  
C. BOWMAN ◽  
A. G. COX

We introduce a path theoretic framework for understanding the representation theory of (quantum) symmetric and general linear groups and their higher-level generalizations over fields of arbitrary characteristic. Our first main result is a ‘super-strong linkage principle’ which provides degree-wise upper bounds for graded decomposition numbers (this is new even in the case of symmetric groups). Next, we generalize the notion of homomorphisms between Weyl/Specht modules which are ‘generically’ placed (within the associated alcove geometries) to cyclotomic Hecke and diagrammatic Cherednik algebras. Finally, we provide evidence for a higher-level analogue of the classical Lusztig conjecture over fields of sufficiently large characteristic.


Sign in / Sign up

Export Citation Format

Share Document