scholarly journals MODULAR DECOMPOSITION NUMBERS OF CYCLOTOMIC HECKE AND DIAGRAMMATIC CHEREDNIK ALGEBRAS: A PATH THEORETIC APPROACH

2018 ◽  
Vol 6 ◽  
Author(s):  
C. BOWMAN ◽  
A. G. COX

We introduce a path theoretic framework for understanding the representation theory of (quantum) symmetric and general linear groups and their higher-level generalizations over fields of arbitrary characteristic. Our first main result is a ‘super-strong linkage principle’ which provides degree-wise upper bounds for graded decomposition numbers (this is new even in the case of symmetric groups). Next, we generalize the notion of homomorphisms between Weyl/Specht modules which are ‘generically’ placed (within the associated alcove geometries) to cyclotomic Hecke and diagrammatic Cherednik algebras. Finally, we provide evidence for a higher-level analogue of the classical Lusztig conjecture over fields of sufficiently large characteristic.

2001 ◽  
Vol 71 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Karin Erdmann

AbstractLet K be a field of characteristic p. The permutation modules associated to partitions of n, usually denoted as Mλ, play a central role not only for symmetric groups but also for general linear groups, via Schur algebras. The indecomposable direct summands of these Mλ were parametrized by James; they are now known as Young modules; and Klyachko and Grabmeier developed a ‘Green correspondence’ for Young modules. The original parametrization used Schur algebras; and James remarked that he did not know a proof using only the representation theory of symmetric groups. We will give such proof, and we will at the same time also prove the correspondence result, by using only the Brauer construction, which is valid for arbitrary finite groups.


Author(s):  
S. Donkin

In [5] James proved theorems on the decomposition numbers, for the general linear groups and symmetric groups, involving the removal of the first row or column from partitions. In [1] we gave different proofs of these theorems based on a result valid for the decomposition numbers of any reductive group. (I am grateful to J. C. Jantzen for pointing out that the Theorem in [1] may also be derived from the universal Chevalley group case, which follows from the proof of 1 ·18 Satz of [6] – the analogue of equation (1) of the proof being obtained by means of the natural isometry (with respect to contra-variant forms) between a certain sum of weight spaces of a Weyl module V(λ) of highest weight λ and the Weyl module corresponding to λ for the Chevalley group determined by the subset of the base involved.) However, we have recently noticed that this result for reductive groups, even when specialized to the case of GLn, gives a substantial generalization of James's Theorems. This generalization, which we give here, is an expression for the decomposition number [λ: μ] for a pair of partitions λ, μ whose diagrams can be simultaneously cut by a horizontal (or vertical) line so as to leave the same number of nodes above the line (or to the left of the line for a vertical cut) in both cases. Cutting between the first and second rows gives James's principal of row removal ([5], theorem 1) and cutting between the first and second column gives his principle of column removal ([5], theorem 2). Another special case of our horizontal result, involving the removal of bottom rows of a pair of partitions, is stated in [7], Satz 8.


2015 ◽  
Vol 16 (5) ◽  
pp. 987-1074 ◽  
Author(s):  
Radhika Ganapathy ◽  
Sandeep Varma

We prove certain depth bounds for Arthur’s endoscopic transfer of representations from classical groups to the corresponding general linear groups over local fields of characteristic 0, with some restrictions on the residue characteristic. We then use these results and the method of Deligne and Kazhdan of studying representation theory over close local fields to obtain, under some restrictions on the characteristic, the local Langlands correspondence for split classical groups over local function fields from the corresponding result of Arthur in characteristic 0.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Hariharan Narayanan

International audience Littlewood Richardson coefficients are structure constants appearing in the representation theory of the general linear groups $(GL_n)$. The main results of this paper are: 1. A strongly polynomial randomized approximation scheme for Littlewood-Richardson coefficients corresponding to indices sufficiently far from the boundary of the Littlewood Richardson cone. 2. A proof of approximate log-concavity of the above mentioned class of Littlewood-Richardson coefficients. Coefficients de Littlewood Richardson sont des constantes de structure apparaissant dans la théorie de la représentation des groupes linéaires généraux $(GL_n)$. Les principaux résultats de cette étude sont les suivants: 1. Un schéma d’approximation polynomiale randomisée fortement pour des coefficients de Littlewood-Richardson correspondant aux indices suffisamment loin de la limite du cône Littlewood Richardson. 2. Une preuve de l’approximatif log-concavité de la classe de coefficients de Littlewood-Richardson mentionné ci-dessus.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Laura Colmenarejo

International audience Plethysm coefficients are important structural constants in the theory of symmetric functions and in the representations theory of symmetric groups and general linear groups. In 1950, Foulkes observed stability properties: some sequences of plethysm coefficients are eventually constants. Such stability properties were proven by Brion with geometric techniques and by Thibon and Carré by means of vertex operators. In this paper we present a newapproach to prove such stability properties. This new proofs are purely combinatorial and follow the same scheme. We decompose plethysm coefficients in terms of other plethysm coefficients (related to the complete homogeneous basis of symmetric functions). We show that these other plethysm coefficients count integer points in polytopes and we prove stability for them by exhibiting bijections between the corresponding sets of integer points of each polytope. Les coefficients du pléthysme sont des constantes de structure importantes de la théorie des fonctions symétriques, ainsi que de la théorie de la représentation des groupes symétriques et des groupes généraux linéaires. En 1950, Foulkes a observé pour ces coefficients de phénomènes de stabilité: certaines suites de coefficients du pléthysme sont stationnaires. De telles propriétés ont été démontrées par Brion, au moyen de techniques géométriques, et par Thibon et Carré, au moyen d’opérateurs vertex. Dans ce travail, nous présentons une nouvelle approche, purement combinatoire, pour démontrer des propriétés de stabilité de ce type. Nous décomposons les coefficients du pléthysme comme somme alternées de coefficients de pléthysme d’un autre type (liés à la base des fonctions symétriques sommes complètes), qui comptent les points entiers dans des polytopes. Nous démontrons la stabilité des suites de ces coefficients en exhibant des bijections entres les ensembles de points entiers des polytopes correspondants.


1996 ◽  
Vol 119 (3) ◽  
pp. 383-402 ◽  
Author(s):  
Matthew J. Richards

The theorem which is still known as Nakayama's Conjecture shows how the modular characters of the symmetric group Sn can be divided into blocks of various weights, those with the same weight having similar properties. In fact, all blocks of weight one have essentially the same decomposition numbers and these are easy to describe. In recent work, Scopes [16, 17] has shown that there are essentially only finitely many possibilities for the decomposition numbers for blocks of any given weight, and has given a bound for the number. We develop the combinatorics implicit in her work, and so establish an improved bound.


Sign in / Sign up

Export Citation Format

Share Document