scholarly journals McKay Quivers and Lusztig Algebras of Some Finite Groups

Author(s):  
Ragnar-Olaf Buchweitz ◽  
Eleonore Faber ◽  
Colin Ingalls ◽  
Matthew Lewis

AbstractWe are interested in the McKay quiver Γ(G) and skew group rings A ∗G, where G is a finite subgroup of GL(V ), where V is a finite dimensional vector space over a field K, and A is a K −G-algebra. These skew group rings appear in Auslander’s version of the McKay correspondence. In the first part of this paper we consider complex reflection groups $\mathsf {G} \subseteq \text {GL}(V)$ G ⊆ GL ( V ) and find a combinatorial method, making use of Young diagrams, to construct the McKay quivers for the groups G(r,p,n). We first look at the case G(1,1,n), which is isomorphic to the symmetric group Sn, followed by G(r,1,n) for r > 1. Then, using Clifford theory, we can determine the McKay quiver for any G(r,p,n) and thus for all finite irreducible complex reflection groups up to finitely many exceptions. In the second part of the paper we consider a more conceptual approach to McKay quivers of arbitrary finite groups: we define the Lusztig algebra $\widetilde {A}(\mathsf {G})$ A ~ ( G ) of a finite group $\mathsf {G} \subseteq \text {GL}(V)$ G ⊆ GL ( V ) , which is Morita equivalent to the skew group ring A ∗G. This description gives us an embedding of the basic algebra Morita equivalent to A ∗ G into a matrix algebra over A.

2010 ◽  
Vol 147 (3) ◽  
pp. 965-1002 ◽  
Author(s):  
Yuri Berest ◽  
Oleg Chalykh

AbstractWe introduce quasi-invariant polynomials for an arbitrary finite complex reflection group W. Unlike in the Coxeter case, the space of quasi-invariants of a given multiplicity is not, in general, an algebra but a module Qk over the coordinate ring of a (singular) affine variety Xk. We extend the main results of Berest et al. [Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003), 279–337] to this setting: in particular, we show that the variety Xk and the module Qk are Cohen–Macaulay, and the rings of differential operators on Xk and Qk are simple rings, Morita equivalent to the Weyl algebra An(ℂ) , where n=dim Xk. Our approach relies on representation theory of complex Cherednik algebras introduced by Dunkl and Opdam [Dunkl operators for complex reflection groups, Proc. London Math. Soc. (3) 86 (2003), 70–108] and is parallel to that of Berest et al. As an application, we prove the existence of shift operators for an arbitrary complex reflection group, confirming a conjecture of Dunkl and Opdam. Another result is a proof of a conjecture of Opdam, concerning certain operations (KZ twists) on the set of irreducible representations of W.


2010 ◽  
Vol 197 ◽  
pp. 175-212
Author(s):  
Maria Chlouveraki

The Rouquier blocks of the cyclotomic Hecke algebras, introduced by Rouquier, are a substitute for the families of characters defined by Lusztig for Weyl groups, which can be applied to all complex reflection groups. In this article, we determine them for the cyclotomic Hecke algebras of the groups of the infinite seriesG(de, e, r), thus completing their calculation for all complex reflection groups.


1990 ◽  
Vol 18 (12) ◽  
pp. 3999-4029 ◽  
Author(s):  
M.C. Hughes

10.37236/232 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
D. Armstrong ◽  
C. Krattenthaler

The purpose of this paper is to complete the study, begun in the first author's PhD thesis, of the topology of the poset of generalized noncrossing partitions associated to real reflection groups. In particular, we calculate the Euler characteristic of this poset with the maximal and minimal elements deleted. As we show, the result on the Euler characteristic extends to generalized noncrossing partitions associated to well-generated complex reflection groups.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 438
Author(s):  
Jeong-Yup Lee ◽  
Dong-il Lee ◽  
SungSoon Kim

We construct a Gröbner-Shirshov basis of the Temperley-Lieb algebra T ( d , n ) of the complex reflection group G ( d , 1 , n ) , inducing the standard monomials expressed by the generators { E i } of T ( d , n ) . This result generalizes the one for the Coxeter group of type B n in the paper by Kim and Lee We also give a combinatorial interpretation of the standard monomials of T ( d , n ) , relating to the fully commutative elements of the complex reflection group G ( d , 1 , n ) . More generally, the Temperley-Lieb algebra T ( d , r , n ) of the complex reflection group G ( d , r , n ) is defined and its dimension is computed.


2003 ◽  
Vol 86 (1) ◽  
pp. 70-108 ◽  
Author(s):  
C. F. DUNKL ◽  
E. M. OPDAM

Dunkl operators for complex reflection groups are defined in this paper. These commuting operators give rise to a parameterized family of deformations of the polynomial De Rham complex. This leads to the study of the polynomial ring as a module over the ‘rational Cherednik algebra’, and a natural contravariant form on this module. In the case of the imprimitive complex reflection groups $G(m, p, N)$, the set of singular parameters in the parameterized family of these structures is described explicitly, using the theory of non-symmetric Jack polynomials.2000 Mathematical Subject Classification: 20F55 (primary), 52C35, 05E05, 33C08 (secondary).


2017 ◽  
Vol 145 (12) ◽  
pp. 5043-5052 ◽  
Author(s):  
Farkhod Eshmatov ◽  
Vyacheslav Futorny ◽  
Sergiy Ovsienko ◽  
Joao Fernando Schwarz

Sign in / Sign up

Export Citation Format

Share Document