rational cherednik algebra
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Merrick Cai ◽  
Daniil Kalinov

In this paper, we study the irreducible quotient [Formula: see text] of the polynomial representation of the rational Cherednik algebra [Formula: see text] of type [Formula: see text] over an algebraically closed field of positive characteristic [Formula: see text] where [Formula: see text]. In the [Formula: see text] case, for all [Formula: see text] we give a complete description of the polynomials in the maximal proper graded submodule [Formula: see text], the kernel of the contravariant form [Formula: see text], and subsequently find the Hilbert series of the irreducible quotient [Formula: see text]. In the [Formula: see text] case, we give a complete description of the polynomials in [Formula: see text] when the characteristic [Formula: see text] and [Formula: see text] is transcendental over [Formula: see text], and compute the Hilbert series of the irreducible quotient [Formula: see text]. In doing so, we prove a conjecture due to Etingof and Rains completely for [Formula: see text], and also for any [Formula: see text] and [Formula: see text]. Furthermore, for [Formula: see text], we prove a simple criterion to determine whether a given polynomial [Formula: see text] lies in [Formula: see text] for all [Formula: see text] with [Formula: see text] and [Formula: see text] fixed.


Author(s):  
Misha V. Feigin ◽  
Martin A. Hallnäs ◽  
Alexander P. Veselov

AbstractLassalle and Nekrasov discovered in the 1990s a surprising correspondence between the rational Calogero–Moser system with a harmonic term and its trigonometric version. We present a conceptual explanation of this correspondence using the rational Cherednik algebra and establish its quasi-invariant extension. More specifically, we consider configurations $${\mathcal {A}}$$ A of real hyperplanes with multiplicities admitting the rational Baker–Akhiezer function and use this to introduce a new class of non-symmetric polynomials, which we call $${\mathcal {A}}$$ A -Hermite polynomials. These polynomials form a linear basis in the space of $${\mathcal {A}}$$ A -quasi-invariants, which is an eigenbasis for the corresponding generalised rational Calogero–Moser operator with harmonic term. In the case of the Coxeter configuration of type $$A_N$$ A N this leads to a quasi-invariant version of the Lassalle–Nekrasov correspondence and its higher order analogues.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 630
Author(s):  
Charles F. Dunkl

In the intersection of the theories of nonsymmetric Jack polynomials in N variables and representations of the symmetric groups S N one finds the singular polynomials. For certain values of the parameter κ there are Jack polynomials which span an irreducible S N -module and are annihilated by the Dunkl operators. The S N -module is labeled by a partition of N, called the isotype of the polynomials. In this paper the Jack polynomials are of the vector-valued type, i.e., elements of the tensor product of the scalar polynomials with the span of reverse standard Young tableaux of the shape of a fixed partition of N. In particular, this partition is of shape m , m , … , m with 2 k components and the constructed singular polynomials are of isotype m k , m k for the parameter κ = 1 / m + 2 . This paper contains the necessary background on nonsymmetric Jack polynomials and representation theory and explains the role of Jucys–Murphy elements in the construction. The main ingredient is the proof of uniqueness of certain spectral vectors, namely the list of eigenvalues of the Jack polynomials for the Cherednik–Dunkl operators, when specialized to κ = 1 / m + 2 . The paper finishes with a discussion of associated maps of modules of the rational Cherednik algebra and an example illustrating the difficulty of finding singular polynomials for arbitrary partitions.


2018 ◽  
Vol 17 (12) ◽  
pp. 1850237
Author(s):  
Seth Shelley-Abrahamson ◽  
Alec Sun

Using a combinatorial description due to Jacon and Lecouvey of the wall crossing bijections for cyclotomic rational Cherednik algebras, we show that the irreducible representations [Formula: see text] of the rational Cherednik algebra [Formula: see text] of type [Formula: see text] for symmetric bipartitions [Formula: see text] are infinite dimensional for all parameters [Formula: see text]. In particular, all finite dimensional irreducible representations of rational Cherednik algebras of type [Formula: see text] arise as restrictions of finite-dimensional irreducible representations of rational Cherednik algebras of type [Formula: see text].


2018 ◽  
Vol 2020 (17) ◽  
pp. 5155-5214
Author(s):  
Dan Ciubotaru ◽  
Marcelo De Martino

Abstract We introduce the local and global indices of Dirac operators for the rational Cherednik algebra $\mathsf{H}_{t,c}(G,\mathfrak{h})$, where $G$ is a complex reflection group acting on a finite-dimensional vector space $\mathfrak{h}$. We investigate precise relations between the (local) Dirac index of a simple module in the category $\mathcal{O}$ of $\mathsf{H}_{t,c}(G,\mathfrak{h})$, the graded $G$-character of the module, the Euler–Poincaré pairing, and the composition series polynomials for standard modules. In the global theory, we introduce integral-reflection modules for $\mathsf{H}_{t,c}(G,\mathfrak{h})$ constructed from finite-dimensional $G$-modules. We define and compute the index of a Dirac operator on the integral-reflection module and show that the index is, in a sense, independent of the parameter function $c$. The study of the kernel of these global Dirac operators leads naturally to a notion of dualised generalised Dunkl–Opdam operators.


2017 ◽  
Vol 5 ◽  
Author(s):  
BEN WEBSTER

We prove a conjecture of Rouquier relating the decomposition numbers in category ${\mathcal{O}}$ for a cyclotomic rational Cherednik algebra to Uglov’s canonical basis of a higher level Fock space. Independent proofs of this conjecture have also recently been given by Rouquier, Shan, Varagnolo and Vasserot and by Losev, using different methods. Our approach is to develop two diagrammatic models for this category ${\mathcal{O}}$; while inspired by geometry, these are purely diagrammatic algebras, which we believe are of some intrinsic interest. In particular, we can quite explicitly describe the representations of the Hecke algebra that are hit by projectives under the $\mathsf{KZ}$-functor from the Cherednik category ${\mathcal{O}}$ in this case, with an explicit basis. This algebra has a number of beautiful structures including categorifications of many aspects of Fock space. It can be understood quite explicitly using a homogeneous cellular basis which generalizes such a basis given by Hu and Mathas for cyclotomic KLR algebras. Thus, we can transfer results proven in this diagrammatic formalism to category ${\mathcal{O}}$ for a cyclotomic rational Cherednik algebra, including the connection of decomposition numbers to canonical bases mentioned above, and an action of the affine braid group by derived equivalences between different blocks.


Sign in / Sign up

Export Citation Format

Share Document