scholarly journals Modified Traces and the Nakayama Functor

Author(s):  
Taiki Shibata ◽  
Kenichi Shimizu

AbstractWe organize the modified trace theory with the use of the Nakayama functor of finite abelian categories. For a linear right exact functor Σ on a finite abelian category ${\mathscr{M}}$ M , we introduce the notion of a Σ-twisted trace on the class $\text {Proj}({\mathscr{M}})$ Proj ( M ) of projective objects of ${\mathscr{M}}$ M . In our framework, there is a one-to-one correspondence between the set of Σ-twisted traces on $\text {Proj}({\mathscr{M}})$ Proj ( M ) and the set of natural transformations from Σ to the Nakayama functor of ${\mathscr{M}}$ M . Non-degeneracy and compatibility with the module structure (when ${\mathscr{M}}$ M is a module category over a finite tensor category) of a Σ-twisted trace can be written down in terms of the corresponding natural transformation. As an application of this principal, we give existence and uniqueness criteria for modified traces. In particular, a unimodular pivotal finite tensor category admits a non-zero two-sided modified trace if and only if it is spherical. Also, a ribbon finite tensor category admits such a trace if and only if it is unimodular.

2012 ◽  
Vol 12 (02) ◽  
pp. 1250149 ◽  
Author(s):  
BERNT TORE JENSEN ◽  
DAG OSKAR MADSEN ◽  
XIUPING SU

We consider filtrations of objects in an abelian category [Formula: see text] induced by a tilting object T of homological dimension at most two. We define three extension closed subcategories [Formula: see text] and [Formula: see text] with [Formula: see text] for j > i, such that each object in [Formula: see text] has a unique filtration with factors in these categories. In dimension one, this filtration coincides with the classical two-step filtration induced by the torsion pair. We also give a refined filtration, using the derived equivalence between the derived categories of [Formula: see text] and the module category of [Formula: see text].


Author(s):  
JÜRGEN FUCHS ◽  
CHRISTOPH SCHWEIGERT

AbstractFor ℳ and $$ \mathcal{N} $$ N finite module categories over a finite tensor category $$ \mathcal{C} $$ C , the category $$ \mathrm{\mathcal{R}}{ex}_{\mathcal{C}} $$ ℛ ex C (ℳ, $$ \mathcal{N} $$ N ) of right exact module functors is a finite module category over the Drinfeld center $$ \mathcal{Z} $$ Z ($$ \mathcal{C} $$ C ). We study the internal Homs of this module category, which we call internal natural transformations. With the help of certain integration functors that map $$ \mathcal{C} $$ C -$$ \mathcal{C} $$ C -bimodule functors to objects of $$ \mathcal{Z} $$ Z ($$ \mathcal{C} $$ C ), we express them as ends over internal Homs and define horizontal and vertical compositions. We show that if ℳ and $$ \mathcal{N} $$ N are exact $$ \mathcal{C} $$ C -modules and $$ \mathcal{C} $$ C is pivotal, then the $$ \mathcal{Z} $$ Z ($$ \mathcal{C} $$ C )-module $$ \mathrm{\mathcal{R}}{ex}_{\mathcal{C}} $$ ℛ ex C (ℳ, $$ \mathcal{N} $$ N ) is exact. We compute its relative Serre functor and show that if ℳ and $$ \mathcal{N} $$ N are even pivotal module categories, then $$ \mathrm{\mathcal{R}}{ex}_{\mathcal{C}} $$ ℛ ex C (ℳ, $$ \mathcal{N} $$ N ) is pivotal as well. Its internal Ends are then a rich source for Frobenius algebras in $$ \mathcal{Z} $$ Z ($$ \mathcal{C} $$ C ).


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yousef Gholami

Abstract This investigation is devoted to the study of a certain class of coupled systems of higher-order Hilfer fractional boundary value problems at resonance. Combining the coincidence degree theory with the Lipschitz-type continuity conditions on nonlinearities, we present some existence and uniqueness criteria. Finally, to practically implement the obtained theoretical criteria, we give an illustrative application.


2018 ◽  
Vol 17 (04) ◽  
pp. 1850062
Author(s):  
Olivier Verdier

Matrix pencils, or pairs of matrices, are used in a variety of applications. By the Kronecker decomposition theorem, they admit a normal form. This normal form consists of four parts, one part based on the Jordan canonical form, one part made of nilpotent matrices, and two other dual parts, which we call the observation and control part. The goal of this paper is to show that large portions of that decomposition are still valid for pairs of morphisms of modules or abelian groups, and more generally in any abelian category. In the vector space case, we recover the full Kronecker decomposition theorem. The main technique is that of reduction, which extends readily to the abelian category case. Reductions naturally arise in two flavors, which are dual to each other. There are a number of properties of those reductions which extend remarkably from the vector space case to abelian categories. First, both types of reduction commute. Second, at each step of the reduction, one can compute three sequences of invariant spaces (objects in the category), which generalize the Kronecker decomposition into nilpotent, observation and control blocks. These sequences indicate whether the system is reduced in one direction or the other. In the category of modules, there is also a relation between these sequences and the resolvent set of the pair of morphisms, which generalizes the regular pencil theorem. We also indicate how this allows to define invariant subspaces in the vector space case, and study the notion of strangeness as an example.


2016 ◽  
Vol 102 (1) ◽  
pp. 74-95
Author(s):  
JON F. CARLSON ◽  
PETER WEBB

With applications in mind to the representations and cohomology of block algebras, we examine elements of the graded center of a triangulated category when the category has a Serre functor. These are natural transformations from the identity functor to powers of the shift functor that commute with the shift functor. We show that such natural transformations that have support in a single shift orbit of indecomposable objects are necessarily of a kind previously constructed by Linckelmann. Under further conditions, when the support is contained in only finitely many shift orbits, sums of transformations of this special kind account for all possibilities. Allowing infinitely many shift orbits in the support, we construct elements of the graded center of the stable module category of a tame group algebra of a kind that cannot occur with wild block algebras. We use functorial methods extensively in the proof, developing some of this theory in the context of triangulated categories.


2020 ◽  
Author(s):  
Miho Fuyama ◽  
Hayato Saigo ◽  
Tatsuji Takahashi

We propose the theory of indeterminate natural transformation (TINT) to investigate the dynamical creation of meaning as an association relationship between images, focusing on metaphor comprehension as an example. TINT models meaning creation as a type of stochastic process based on mathematical structure and defined by association relationships, such as morphisms in category theory, to represent the indeterminate nature of structure-structure interactions between the systems of image meanings. Such interactions are formulated in terms of the so-called coslice categories and functors as structure-preserving correspondences between them. The relationship between such functors is “indeterminate natural transformation”, the central notion in TINT, which models the creation of meanings in a precise manner. For instance, metaphor comprehension is modeled by the construction of indeterminate natural transformations from a canonically defined functor, which we call the base-of-metaphor functor.


1966 ◽  
Vol 9 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Rosemary Bonyun

Homological monoids, as first defined by Hilton and Ledermann [ l ], are a generalization of abelian categories. It is known that if is an abelian category, so is here we prove the more general theorem that if is a homological monoid, so is . Our definition differs from that originally given by Hilton and Ledermann by the addition of a uniqueness condition in Axiom 1.


2019 ◽  
Vol 62 (2) ◽  
pp. 383-439 ◽  
Author(s):  
LEONID POSITSELSKI

AbstractLet R→U be an associative ring epimorphism such that U is a flat left R-module. Assume that the related Gabriel topology $\mathbb{G}$ of right ideals in R has a countable base. Then we show that the left R-module U has projective dimension at most 1. Furthermore, the abelian category of left contramodules over the completion of R at $\mathbb{G}$ fully faithfully embeds into the Geigle–Lenzing right perpendicular subcategory to U in the category of left R-modules, and every object of the latter abelian category is an extension of two objects of the former one. We discuss conditions under which the two abelian categories are equivalent. Given a right linear topology on an associative ring R, we consider the induced topology on every left R-module and, for a perfect Gabriel topology $\mathbb{G}$, compare the completion of a module with an appropriate Ext module. Finally, we characterize the U-strongly flat left R-modules by the two conditions of left positive-degree Ext-orthogonality to all left U-modules and all $\mathbb{G}$-separated $\mathbb{G}$-complete left R-modules.


Author(s):  
Leonid Positselski ◽  
Jan Šťovíček

Abstract To a big $n$-tilting object in a complete, cocomplete abelian category ${\textsf{A}}$ with an injective cogenerator we assign a big $n$-cotilting object in a complete, cocomplete abelian category ${\textsf{B}}$ with a projective generator and vice versa. Then we construct an equivalence between the (conventional or absolute) derived categories of ${\textsf{A}}$ and ${\textsf{B}}$. Under various assumptions on ${\textsf{A}}$, which cover a wide range of examples (for instance, if ${\textsf{A}}$ is a module category or, more generally, a locally finitely presentable Grothendieck abelian category), we show that ${\textsf{B}}$ is the abelian category of contramodules over a topological ring and that the derived equivalences are realized by a contramodule-valued variant of the usual derived Hom functor.


1988 ◽  
Vol 103 (3) ◽  
pp. 399-408 ◽  
Author(s):  
W. K. Nicholson ◽  
J. F. Watters

AbstractGiven a Morita context (R, V, W, S), there are functors W⊗() and hom (V, ) from R-mod to; S-mod and a natural transformation λ from the first to the second. This has an epi-mono factorization and the intermediate functor we denote by ()° with natural transformations and . The tensor functor is exact if and only if WR is flat, whilst the hom functor is exact if and only if RV is projective. We begin by determining conditions under which ()° is exact; this is Theorem 1.


Sign in / Sign up

Export Citation Format

Share Document