Meromorphic Functions of Restricted Hyper-Order Sharing One or Two Sets with Its Linear C-Shift Operator

Author(s):  
A. Banerjee ◽  
A. Roy
2021 ◽  
Vol 55 (1) ◽  
pp. 57-63
Author(s):  
A. Banerjee ◽  
A. Roy

In this article, we obtain two results on $n$ the power of a meromorphic function and its shift operator sharing a small function together with a value which improve and complement some earlier results. In particular, more or less we have improved and extended two results of Qi-Yang [Meromorphic functions that share values with their shifts or their $n$-th order differences, Analysis Math., 46(4)2020, 843-865] by dispelling the superfluous conclusions in them.


2021 ◽  
Vol 47 (1) ◽  
pp. 243-260
Author(s):  
P. Yang ◽  
S. Wang

2019 ◽  
Vol 69 (1) ◽  
pp. 99-110
Author(s):  
Weichuan Lin ◽  
Shengjiang Chen ◽  
Xiaoman Gao

Abstract We prove a periodic theorem of meromorphic functions of hyper-order ρ2(f) < 1. As an application, we obtain the corresponding uniqueness theorem on periodic meromorphic functions. In addition, we show the accuracy of the results by giving some examples.


2021 ◽  
Vol 13(62) (2) ◽  
pp. 423-432
Author(s):  
Abhijit Banerjee ◽  
Arpita Roy

In this paper, we investigate shared value problems of finite ordered meromorphic functions with the linear shift operators governed by them, which practically provide an answer to Yang’s question. We exhibit a number of examples which will justify some assertions in the paper. Based on some examples relevant with the discussion, we also place a question in the penultimate section for future research.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhijit Banerjee ◽  
Arpita Roy

PurposeThe paper aims to build the relationship between an entire function of restricted hyper-order with its linear c-shift operator.Design/methodology/approachStandard methodology for papers in difference and shift operators and value distribution theory have been used.FindingsThe relation between an entire function of restricted hyper-order with its linear c-shift operator was found under the periphery of sharing a set of two small functions IM (ignoring multiplicities) when exponent of convergence of zeros is strictly less than its order. This research work is an improvement and extension of two previous papers.Originality/valueThis is an original research work.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Abhijit Banerjee ◽  
Saikat Bhattacharyya

AbstractIn the paper, we introduce a new notion of reduced linear c-shift operator $L _{c}^{r}\,f$Lcrf, and with the aid of this new operator, we study the uniqueness of meromorphic functions $f(z)$f(z) and $L_{c}^{r}\,f$Lcrf sharing two or more values in the extended complex plane. The results obtained in the paper significantly improve a number of existing results. Further, using the notion of weighted sharing of sets, we deal the same problem. We exhibit a handful number of examples to justify certain statements relevant to the content of the paper. We are also able to determine the form of the function that coincides with its reduced linear c-shift operator. At the end of the paper, we pose an open question for future research.


2012 ◽  
Vol 42 (11) ◽  
pp. 1095-1114
Author(s):  
HongXun YI ◽  
XiaoMin LI

2019 ◽  
Vol 51 (3) ◽  
pp. 465-504
Author(s):  
Risto Korhonen ◽  
Yueyang Zhang

AbstractIt is shown that if $$\begin{aligned} f(z+1)^n=R(z,f), \end{aligned}$$f(z+1)n=R(z,f),where R(z, f) is rational in f with meromorphic coefficients and $$\deg _f(R(z,f))=n$$degf(R(z,f))=n, has an admissible meromorphic solution, then either f satisfies a difference linear or Riccati equation with meromorphic coefficients, or the equation above can be transformed into one in a list of ten equations with certain meromorphic or algebroid coefficients. In particular, if $$f(z+1)^n=R(z,f)$$f(z+1)n=R(z,f), where the assumption $$\deg _f(R(z,f))=n$$degf(R(z,f))=n has been discarded, has rational coefficients and a transcendental meromorphic solution f of hyper-order $$<1$$<1, then either f satisfies a difference linear or Riccati equation with rational coefficients, or the equation above can be transformed into one in a list of five equations which consists of four difference Fermat equations and one equation which is a special case of the symmetric QRT map. Solutions to all of these equations are presented in terms of Weierstrass or Jacobi elliptic functions, or in terms of meromorphic functions that are solutions to a difference Riccati equation. This provides a natural difference analogue of Steinmetz’ generalization of Malmquist’s theorem.


2016 ◽  
Vol 47 (3) ◽  
pp. 357-370 ◽  
Author(s):  
PANG XueCheng ◽  
YANG Pai ◽  
NIU PeiYan

Sign in / Sign up

Export Citation Format

Share Document