scholarly journals Streptomonospora litoralis sp. nov., a halophilic thiopeptides producer isolated from sand collected at Cuxhaven beach

Author(s):  
Shadi Khodamoradi ◽  
Richard L. Hahnke ◽  
Yvonne Mast ◽  
Peter Schumann ◽  
Peter Kämpfer ◽  
...  

AbstractStrain M2T was isolated from the beach of Cuxhaven, Wadden Sea, Germany, in course of a program to attain new producers of bioactive natural products. Strain M2T produces litoralimycin and sulfomycin-type thiopeptides. Bioinformatic analysis revealed a potential biosynthetic gene cluster encoding for the M2T thiopeptides. The strain is Gram-stain-positive, rod shaped, non-motile, spore forming, showing a yellow colony color and forms extensively branched substrate mycelium and aerial hyphae. Inferred from the 16S rRNA gene phylogeny strain M2T affiliates with the genus Streptomonospora. It shows 96.6% 16S rRNA gene sequence similarity to the type species Streptomonospora salina DSM 44593 T and forms a distinct branch with Streptomonospora sediminis DSM 45723 T with 97.0% 16S rRNA gene sequence similarity. Genome-based phylogenetic analysis revealed that M2T is closely related to Streptomonospora alba YIM 90003 T with a digital DNA-DNA hybridisation (dDDH) value of 26.6%. The predominant menaquinones of M2T are MK-10(H6), MK-10(H8), and MK-11(H6) (> 10%). Major cellular fatty acids are iso-C16:0, anteiso C17:0 and C18:0 10-methyl. The polar lipid profile consisted of diphosphatidylglycerol phosphatidyl glycerol, phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, three glycolipids, two unknown phospholipids, and two unknown lipids. The genome size of type strain M2T is 5,878,427 bp with 72.1 mol % G + C content. Based on the results obtained from phylogenetic and chemotaxonomic studies, strain M2T (= DSM 106425 T = NCCB 100650 T) is considered to represent a novel species within the genus Streptomonospora for which the name Streptomonospora litoralis sp. nov. is proposed.

2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4839-4844 ◽  
Author(s):  
Eu Jin Chung ◽  
Hwan Sik Yoon ◽  
Kyung Hyun Kim ◽  
Che Ok Jeon ◽  
Young Ryun Chung

A Gram-stain-negative, coccobacilli-shaped bacterium, designated YC6724T, was isolated from the rhizosphere of rice in Jinju, Korea. The taxonomy of strain YC6724T was studied using a polyphasic approach. Strain YC6724T grew optimally at 30 °C and pH 7.0–8.0. Comparative 16S rRNA gene sequence analyses showed that the strain was most closely related to Roseomonas soli 5N26T (98.4 % 16S rRNA gene sequence similarity), Roseomonas lacus TH-G33T (97.3 %) and Roseomonas terrae DS-48T (97.3 %). Sequence similarities with other species of the genus Roseomonas with validly published names were lower than 94.0 %. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain YC6724T formed a distinct phyletic lineage within the genus Roseomonas. Strain YC6724T had DNA–DNA relatedness values of 16.6 %, 44.0 % and 33.2 % with R. soli KACC 16376T, R. terrae KACC 12677T and R. lacus KACC 11678T, respectively. The predominant fatty acids of strain YC6724T were C18 : 1ω7c and/or C18 : 1ω6c, C16 : 0 and C18 : 1 2-OH. The polar lipid profile contained phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unknown aminolipid and two unknown lipids. The G+C content of the genomic DNA was 70.5 mol% and the major quinone was Q-10. Strain YC6724T contained spermidine as the major polyamine. On the basis of phenotypic, chemotaxonomic and molecular data, it is clear that strain YC6724T represents a novel species of the genus Roseomonas, for which the name Roseomonas oryzicola sp. nov. is proposed. The type strain is YC6724T ( = KCTC 22478T = NBRC 109439T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3522-3526 ◽  
Author(s):  
Yu Deng ◽  
Xiang Guo ◽  
Yanwei Wang ◽  
Mingxiong He ◽  
Kedong Ma ◽  
...  

A Gram-staining-positive, spore-forming, strictly anaerobic bacterium, designated strain LAM0A37T, was isolated from enrichment samples collected from a petroleum reservoir in Shengli oilfield. Cells of strain LAM0A37T were rod-shaped and motile by peritrichous flagella. The optimal temperature and pH for growth were 40 °C and 7.0–7.5, respectively. The strain did not require NaCl for growth but tolerated up to 3 % (w/v) NaCl. Strain LAM0A37T was able to utilize glucose, fructose, maltose, xylose, sorbitol, cellobiose, melibiose and melezitose as sole carbon sources. Sulfite was used as an electron acceptor. The main products of glucose fermentation were acetate and CO2. The predominant fatty acid was C16 : 0 (23.6 %). The main polar lipid profile comprised of five glycolipids, six phospholipids and two lipids. No menaquinone was detected. The genomic DNA G+C content was 27.1 ± 0.2 mol% as determined by the T m method. Analysis of the 16S rRNA gene sequence indicated that the isolate was a member of the genus Terrisporobacter, and was most closely related to Terrisporobacter glycolicus JCM 1401T and Terrisporobacter mayombei DSM 6539T with 98.3 % 16S rRNA gene sequence similarity to both. DNA–DNA hybridization values between strain LAM0A37T and type strains of Terrisporobacter glycolicus and Terrisporobacter mayombei were 45.6 ± 0.3 % and 38.3 ± 0.4 %, respectively. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0A37T is suggested to represent a novel species of the genus Terrisporobacter, for which the name Terrisporobacter petrolearius sp. nov. is proposed. The type strain is LAM0A37T ( = ACCC 00740T = JCM 19845T).


2011 ◽  
Vol 61 (2) ◽  
pp. 384-391 ◽  
Author(s):  
Wolfgang Eder ◽  
Gerhard Wanner ◽  
Wolfgang Ludwig ◽  
Hans-Jürgen Busse ◽  
Frank Ziemke-Kägeler ◽  
...  

A Gram-negative, oxidase- and catalase-positive, flagellated, rod-shaped bacterium, designated strain EM 1T, was isolated from purified water. 16S rRNA gene sequence analysis indicated that the novel strain belonged to the family Oxalobacteraceae within the class Betaproteobacteria; the closest phylogenetic relative was Undibacterium pigrum DSM 19792T (96.7 % gene sequence similarity). The new isolate could be distinguished from the type strain of U. pigrum DSM 19792T (=CCUG 49009T=CIP 109318T) and from strain CCUG 49012T, which has been described as a second genomovar of this species, on the basis of genotypic data and several phenotypic properties. An S-layer was present in the cell envelope in U. pigrum DSM 19792T, but was absent in strains EM 1T and CCUG 49012T. Test conditions were established that enabled strain CCUG 49012T to be distinguished from U. pigrum DSM 19792T. As found for U. pigrum, the main fatty acids of strains EM 1T and CCUG 49012T were summed feature 3 (including unsaturated C16 : 1 ω7c), straight-chain C16 : 0 and unsaturated C18 : 1 ω7c (low percentage in strain CCUG 49012T), and C10 : 0 3-OH was the sole hydroxylated fatty acid. The polar lipid profile consisted of the predominant lipids phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The polyamine profile was mainly composed of the major compound putrescine and moderate amounts of 2-hydroxyputrescine. In contrast to U. pigrum and strain CCUG 49012T, where ubiquinone Q8 was reported as the sole quinone component, the quinone system of strain EM 1T consisted of ubiquinone Q-8 (64 %) and Q-7 (36 %). The 16S rRNA gene sequence similarity, the polar lipid profile and the absence of C12-hydroxylated fatty acids all indicated that strain EM 1T was affiliated with the genus Undibacterium. 16S rRNA gene sequence similarity values lower than 97.0 % and several differentiating phenotypic traits demonstrated that strain EM 1T represents a novel species for which the name Undibacterium oligocarboniphilum sp. nov. is proposed (type strain EM 1T=DSM 21777T=CCUG 57265T). In addition, based on previously published results and this study, a separate species, Undibacterium parvum sp. nov., is proposed with strain CCUG 49012T (=DSM 23061T=CIP 109317T) as the type strain.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4495-4502 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Yi-Ling Chen ◽  
Wen-Ming Chen

A bacterial strain designated TNR-2T was isolated from spring water in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain TNR-2T were aerobic, Gram-stain-negative, straight rods, motile by a single polar flagellum and containing poly-β-hydroxybutyrate. The cells were covered by large capsules and formed yellow colonies. Growth occurred at 15–37 °C (optimum, 20–30 °C), with 0–1.0 % NaCl (optimum, 0–0.1 %) and at pH 5.0–8.0 (optimum, pH 6.0). According to a phylogenetic tree based on 16S rRNA gene sequence analysis, strain TNR-2T belonged to the genus Sphingomonas and clustered with Sphingomonas alpina S8-3T, with which it shared the highest 16S rRNA gene sequence similarity (95.6 %). The major fatty acids (>10 %) of strain TNR-2T were C18 : 1ω7c, C17 : 1ω6c and C16 : 0. The DNA G+C content was 62.8 mol%. The major isoprenoid quinone was Q-10. The major polyamine was homospermidine. The polar lipid profile consisted of sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylcholine, diphosphatidylglycerol, two uncharacterized glycolipids and an uncharacterized phospholipid. Phenotypic characteristics of the novel strain differed from those of the closest related species of the genus Sphingomonas. On the basis of the genotypic, chemotaxonomic and phenotypic data, strain TNR-2T represents a novel species in the genus Sphingomonas, for which the name Sphingomonas fonticola sp. nov. is proposed. The type strain is TNR-2T ( = BCRC 80539T = LMG 27384T = KCTC 32258T).


2011 ◽  
Vol 61 (10) ◽  
pp. 2348-2352 ◽  
Author(s):  
P. Kämpfer ◽  
A. B. Arun ◽  
H.-J. Busse ◽  
Chiu-Chung Young ◽  
W.-A. Lai ◽  
...  

A Gram-staining-positive coccus, designated CC-SPL15-2T, was isolated from the rhizosphere of Sesuvium portulacastrum. By 16S rRNA gene sequence analysis, it was shown that strain CC-SPL15-2T belonged to the genus Salinicoccus. The isolate was most closely related to Salinicoccus hispanicus DSM 5352T (98.3 % 16S rRNA gene sequence similarity) and Salinicoccus roseus DSM 5351T (96.7 %); similarities to all other members of the genus Salinicoccus were <96.5 %. In accordance with characteristics of the genus Salinicoccus, the quinone system was mainly composed of menaquinone MK-6. The polar lipid profile exhibited the major components diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. In the polyamine pattern, spermidine was the predominant compound. The fatty acids were anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0, which supported the affiliation of strain CC-SPL15-2T to the genus Salinicoccus. DNA–DNA relatedness between strain CC-SPL15-2T and S. hispanicus CCUG 43288T was 42 and 32 % (reciprocal analysis). From these data as well as from physiological and biochemical tests, a clear differentiation of strain CC-SPL15-2T from S. hispanicus and other members of the genus Salinicoccus was possible. We propose that strain CC-SPL15-2T be assigned to a novel species, with the name Salinicoccus sesuvii sp. nov. The type strain is CC-SPL15-2T ( = DSM 23267T  = CCM 7756T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2702-2705 ◽  
Author(s):  
P. Kämpfer ◽  
S. Wellner ◽  
K. Lohse ◽  
N. Lodders ◽  
K. Martin

A Gram-positive-staining, non-endospore-forming actinobacterium, designated C7T, was isolated from the leaf surface of Trifolium repens. On the basis of 16S rRNA gene sequence analysis, strain C7T was shown to belong to the genus Williamsia and was most closely related to Williamsia maris SJS0289/JS1T (98.0 % 16S rRNA gene sequence similarity), Williamsia deligens IMMIB RIV-956T (96.4 %) and Williamsia serinedens IMMIB SR-4T (95.7 %). The quinone system consisted predominantly of the menaquinones MK-9(H2), MK-8(H2) and MK-7(H2). The major components in the polar lipid profile were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. Mycolic acids were present. These chemotaxonomic traits and the major fatty acids, which were C16 : 1ω7c, C16 : 0, C18 : 0, C18 : 1ω9c and tuberculostearic acid, supported the affiliation of strain C7T with the genus Williamsia. Physiological and biochemical analysis revealed clear differences between strain C7T and its closest phylogenetic neighbours. Therefore, strain C7T represents a novel species, for which the name Williamsia phyllosphaerae sp. nov. is proposed. The type strain is C7T ( = CCUG 60465T = CCM 7855T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3352-3358 ◽  
Author(s):  
Om Prakash ◽  
Yogesh Nimonkar ◽  
Ankita Vaishampayan ◽  
Mrinal Mishra ◽  
Shreyas Kumbhare ◽  
...  

A novel bacterial strain, 29Y89BT, was isolated from a faecal sample of a healthy human subject. Cells were Gram-stain-negative, motile, non-spore-forming and rod-shaped. Strain 29Y89BT formed cream-coloured colonies 2 mm in diameter on trypticase soy agar and showed optimum growth at 35 °C. Strain 29Y89BT showed highest 16S rRNA gene sequence similarity to Pantoea gaviniae A18/07T (98.4 %) followed by Pantoea calida 1400/07T (97.2 %). Multi-locus sequence analysis using atpD (ATP synthase β subunit), gyrB (DNA gyrase), infB (initiation translation factor 2) and rpoB (RNA polymerase β subunit) genes also supported the result of 16S rRNA gene sequence based phylogeny. Strain 29Y89BT showed 62 and 40.7 % DNA–DNA relatedness with P. calida DSM 22759T and P. gaviniae DSM 22758T. Strain 29Y89BT contained C17  : 0 cyclo, C19  : 0 cyclo ω8c, C16 : 0, C14 : 0 and C12 : 0 as predominant fatty acids. In addition, strain 29Y89BT showed physiological and phenotypic differences from its closest relatives P. gaviniae DSM 22758T and P. calida DSM 22759T. The polar lipid profile mainly comprised phospholipids. The DNA G+C content was 59.1 mol%. Thus, based on the findings of the current study, strain 29Y89BT showed clear delineations from its closest relatives P. gaviniae DSM 22758T and P. calida DSM 22759T, and is thus considered to represent a novel species of the genus Pantoea, for which the name Pantoea intestinalis sp. nov. is proposed. The type strain is 29Y89BT ( = DSM 28113T = MCC 2554T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2107-2111 ◽  
Author(s):  
Kirti Kumari ◽  
Pooja Sharma ◽  
Kshitiz Tyagi ◽  
Rup Lal

A bacterial strain, designated P15T, was isolated from the soil of an open hexachlorocyclohexane dumpsite. Comparative sequence analysis showed that strain P15T displayed high 16S rRNA gene sequence similarities (94.4–97.2 %) with members of the genus Pseudoxanthomonas. The isolate was most closely related to Pseudoxanthomonas mexicana AMX 26BT (97.2 % 16S rRNA gene sequence similarity) and Pseudoxanthomonas japonensis 12-3T (97.2 %). DNA–DNA relatedness studies showed unambiguously that strain P15T represented a novel species that was separate from P. mexicana DSM 17121T (7.7 %) and P. japonensis DSM 17109T (9.4 %). The predominant cellular fatty acids of strain P15T were iso-C16 : 0 (21.4 %), iso-C15 : 0 (16.1 %), summed feature 9 (comprising iso-C17 : 1ω9c and/or 10-methyl C16 : 0; 14.9 %), iso-C11 : 0 3-OH (8.3 %) and iso-C14 : 0 (7.0 %). The polar lipid profile of strain P15T showed the presence of large amounts of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol in addition to unknown glycolipids, phospholipids and an amino-group-containing polar lipid. Ubiquinone 8 was found as the major quinone. The polyamine profile showed the presence of spermidine. The DNA G+C content was 62.9±2 mol%. Strain P15T is described as representing a new member of the genus Pseudoxanthomonas, for which the name Pseudoxanthomonas indica sp. nov. is proposed. The type strain is P15T ( = MTCC 8596T = CCM 7430T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4163-4168 ◽  
Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
Stefanie P. Glaeser

A Gram-stain-positive, facultatively anaerobic, endospore-forming organism, isolated from the stem of Gossypium hirsutum, was studied to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity comparisons, strain JM-267T was grouped in the genus Bacillus, related most closely to the type strains of Bacillus simplex and Bacillus huizhouensis (both 97.8 %), Bacillus muralis (97.7 %), Bacillus butanolivorans and Bacillus psychrosaccharolyticus (both 97.3 %). 16S rRNA gene sequence similarity to the sequences of the type strains of other Bacillus species was < 97.0 %. The fatty acid profile supported the grouping of the strain to the genus Bacillus. As major fatty acids, anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0 and iso-C16 : 0 were detected. The polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major quinone was menaquinone 7 (MK-7). DNA–DNA hybridizations with B. simplex DSM 1321T, B. huizhouensis GSS03T, B. muralis LMG 20238T, B. butanolivorans LMG 23974T and B. psychrosaccharolyticus DSM 6T resulted in values clearly below 70 %. In addition, physiological and biochemical test results allowed the clear phenotypic differentiation of strain JM-267T from the most closely related species. Hence, strain JM-267T is considered to represent a novel species of the genus Bacillus, for which the name Bacillus gossypii sp. nov. is proposed. The type strain is JM-267T ( = DSM 100034T = LMG 28742T).


2010 ◽  
Vol 60 (5) ◽  
pp. 1118-1124 ◽  
Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
Brian J. Tindall ◽  
Manfred Nimtz ◽  
Iris Grün-Wollny

A Gram-positively staining, aerobic, non-motile actinomycete, strain GW 12687T, that formed rose-pigmented colonies and branched substrate and aerial mycelia was studied in detail for its taxonomic position. On the basis of 16S rRNA gene sequence similarity studies, strain GW 12687T was grouped into the genus Nonomuraea, being most closely related to Nonomuraea dietziae (97.6 %), Nonomuraea africana (97.1 %), and Nonomuraea kuesteri (97.1 %). The 16S rRNA gene sequence similarity to other species of the genus Nonomuraea was ≤97 %. The chemotaxonomic characterization supported allocation of the strain to the genus Nonomuraea. The major menaquinone was MK-9(H4) with minor amounts of MK-9(H2), MK-9(H6), MK-9(H0) and MK-8(H4). The polar lipid profile contained the major compound diphosphatidylglycerol, moderate amounts of phosphatidylmonomethylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, hydroxy-phosphatidylmonomethylethanolamine, and an unknown aminophosphoglycolipid. Phosphatidylinositol mannosides and phosphatidylinositol were also present. The major fatty acids were iso- and anteiso- and 10-methyl-branched fatty acids. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain GW 12687T from closely related species. Thus, GW 12687T represents a novel species of the genus Nonomuraea, for which the name Nonomuraea rosea sp. nov. is proposed, with GW 12687T (=DSM 45177T =CCUG 56107T) as the type strain.


Sign in / Sign up

Export Citation Format

Share Document