The p-moment exponential robust stability for stochastic systems with distributed delays and interval parameters

2009 ◽  
Vol 30 (7) ◽  
pp. 915-924 ◽  
Author(s):  
Chun-hua Su ◽  
Si-feng Liu
2012 ◽  
Vol 461 ◽  
pp. 633-636
Author(s):  
Cheng Wang

The problem of delay-dependent robust stability of uncertain stochastic systems with time-varying delay is discussed in this paper. Based on the Lyapunov-Krasovskii theory and free-weighting matrix technique, new delay-dependent stability criterion is presented. The criterion is in terms of linear matrix inequality (LMI) which can be solved by various available algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Xin-rong Cong ◽  
Long-suo Li

This paper investigates the robust stability for a class of stochastic systems with both state and control inputs. The problem of the robust stability is solved via static output feedback, and we convert the problem to a constrained convex optimization problem involving linear matrix inequality (LMI). We show how the proposed linear matrix inequality framework can be used to select a quadratic Lyapunov function. The control laws can be produced by assuming the stability of the systems. We verify that all controllers can robustly stabilize the corresponding system. Further, the numerical simulation results verify the theoretical analysis results.


Sign in / Sign up

Export Citation Format

Share Document