Infrared image super-resolution reconstruction by using generative adversarial network with an attention mechanism

Author(s):  
Qing-Ming Liu ◽  
Rui-Sheng Jia ◽  
Yan-Bo Liu ◽  
Hai-Bin Sun ◽  
Jian-Zhi Yu ◽  
...  
2021 ◽  
Vol 12 (6) ◽  
pp. 1-20
Author(s):  
Fayaz Ali Dharejo ◽  
Farah Deeba ◽  
Yuanchun Zhou ◽  
Bhagwan Das ◽  
Munsif Ali Jatoi ◽  
...  

Single Image Super-resolution (SISR) produces high-resolution images with fine spatial resolutions from a remotely sensed image with low spatial resolution. Recently, deep learning and generative adversarial networks (GANs) have made breakthroughs for the challenging task of single image super-resolution (SISR) . However, the generated image still suffers from undesirable artifacts such as the absence of texture-feature representation and high-frequency information. We propose a frequency domain-based spatio-temporal remote sensing single image super-resolution technique to reconstruct the HR image combined with generative adversarial networks (GANs) on various frequency bands (TWIST-GAN). We have introduced a new method incorporating Wavelet Transform (WT) characteristics and transferred generative adversarial network. The LR image has been split into various frequency bands by using the WT, whereas the transfer generative adversarial network predicts high-frequency components via a proposed architecture. Finally, the inverse transfer of wavelets produces a reconstructed image with super-resolution. The model is first trained on an external DIV2 K dataset and validated with the UC Merced Landsat remote sensing dataset and Set14 with each image size of 256 × 256. Following that, transferred GANs are used to process spatio-temporal remote sensing images in order to minimize computation cost differences and improve texture information. The findings are compared qualitatively and qualitatively with the current state-of-art approaches. In addition, we saved about 43% of the GPU memory during training and accelerated the execution of our simplified version by eliminating batch normalization layers.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 449 ◽  
Author(s):  
Can Li ◽  
Liejun Wang ◽  
Shuli Cheng ◽  
Naixiang Ao

In recent years, the common algorithms for image super-resolution based on deep learning have been increasingly successful, but there is still a large gap between the results generated by each algorithm and the ground-truth. Even some algorithms that are dedicated to image perception produce more textures that do not exist in the original image, and these artefacts also affect the visual perceptual quality of the image. We believe that in the existing perceptual-based image super-resolution algorithm, it is necessary to consider Super-Resolution (SR) image quality, which can restore the important structural parts of the original picture. This paper mainly improves the Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) algorithm in the following aspects: adding a shallow network structure, adding the dual attention mechanism in the generator and the discriminator, including the second-order channel mechanism and spatial attention mechanism and optimizing perceptual loss by adding second-order covariance normalization at the end of feature extractor. The results of this paper ensure image perceptual quality while reducing image distortion and artefacts, improving the perceived similarity of images and making the images more in line with human visual perception.


Sign in / Sign up

Export Citation Format

Share Document