Model-based diagnosis with improved implicit hitting set dualization

Author(s):  
Huisi Zhou ◽  
Dantong Ouyang ◽  
Liming Zhang ◽  
Naiyu Tian
Keyword(s):  
2016 ◽  
Vol 55 ◽  
pp. 835-887 ◽  
Author(s):  
Dietmar Jannach ◽  
Thomas Schmitz ◽  
Kostyantyn Shchekotykhin

Model-Based Diagnosis (MBD) is a principled and domain-independent way of analyzing why a system under examination is not behaving as expected. Given an abstract description (model) of the system's components and their behavior when functioning normally, MBD techniques rely on observations about the actual system behavior to reason about possible causes when there are discrepancies between the expected and observed behavior. Due to its generality, MBD has been successfully applied in a variety of application domains over the last decades. In many application domains of MBD, testing different hypotheses about the reasons for a failure can be computationally costly, e.g., because complex simulations of the system behavior have to be performed. In this work, we therefore propose different schemes of parallelizing the diagnostic reasoning process in order to better exploit the capabilities of modern multi-core computers. We propose and systematically evaluate parallelization schemes for Reiter's hitting set algorithm for finding all or a few leading minimal diagnoses using two different conflict detection techniques. Furthermore, we perform initial experiments for a basic depth-first search strategy to assess the potential of parallelization when searching for one single diagnosis. Finally, we test the effects of parallelizing "direct encodings" of the diagnosis problem in a constraint solver.


2020 ◽  
Vol 43 ◽  
Author(s):  
Peter Dayan

Abstract Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.


2001 ◽  
Vol 7 (S2) ◽  
pp. 578-579
Author(s):  
David W. Knowles ◽  
Sophie A. Lelièvre ◽  
Carlos Ortiz de Solόrzano ◽  
Stephen J. Lockett ◽  
Mina J. Bissell ◽  
...  

The extracellular matrix (ECM) plays a critical role in directing cell behaviour and morphogenesis by regulating gene expression and nuclear organization. Using non-malignant (S1) human mammary epithelial cells (HMECs), it was previously shown that ECM-induced morphogenesis is accompanied by the redistribution of nuclear mitotic apparatus (NuMA) protein from a diffuse pattern in proliferating cells, to a multi-focal pattern as HMECs growth arrested and completed morphogenesis . A process taking 10 to 14 days.To further investigate the link between NuMA distribution and the growth stage of HMECs, we have investigated the distribution of NuMA in non-malignant S1 cells and their malignant, T4, counter-part using a novel model-based image analysis technique. This technique, based on a multi-scale Gaussian blur analysis (Figure 1), quantifies the size of punctate features in an image. Cells were cultured in the presence and absence of a reconstituted basement membrane (rBM) and imaged in 3D using confocal microscopy, for fluorescently labeled monoclonal antibodies to NuMA (fαNuMA) and fluorescently labeled total DNA.


Author(s):  
Charles Bouveyron ◽  
Gilles Celeux ◽  
T. Brendan Murphy ◽  
Adrian E. Raftery

Author(s):  
Jonathan Jacky ◽  
Margus Veanes ◽  
Colin Campbell ◽  
Wolfram Schulte
Keyword(s):  

2008 ◽  
Author(s):  
Ryan K. Jessup ◽  
Jerome R. Busemeyer ◽  
Joshua W. Brown

Sign in / Sign up

Export Citation Format

Share Document