A robust zero-watermarking algorithm for lossless copyright protection of medical images

Author(s):  
Zhiqiu Xia ◽  
Xingyuan Wang ◽  
Chunpeng Wang ◽  
Changxu Wang ◽  
Bin Ma ◽  
...  
Author(s):  
Kun Hu ◽  
Xiaochao Wang ◽  
Jianping Hu ◽  
Hongfei Wang ◽  
Hong Qin

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
Qifei Zhou ◽  
Changqing Zhu ◽  
Na Ren ◽  
Weitong Chen ◽  
Weiteng Gong

Zero watermarking is an important part of copyright protection of vector geographic data. However, how to improve the robustness of zero watermarking is still a critical challenge, especially in resisting attacks with significant distortion. We proposed a zero watermarking method for vector geographic data based on the number of neighboring features. The method makes full use of spatial characteristics of vector geographic data, including topological characteristics and statistical characteristics. First, the number of first-order neighboring features (NFNF) and the number of second-order neighboring features (NSNF) of every feature in vector geographic data are counted. Then, the watermark bit is determined by the NFNF value, and the watermark index is determined by the NSNF value. Finally, combine the watermark bits and the watermark indices to construct a watermark. Experiments verify the theoretical achievements and good robustness of this method. Simulation results also demonstrate that the normalized coefficient of the method is always kept at 1.00 under the attacks that distort data significantly, which has the superior performance in comparison to other methods.


Author(s):  
Xiliang Xiao ◽  
Jing Liu ◽  
Jingbing Li ◽  
Yangxiu Fang ◽  
Cheng Zeng ◽  
...  

2019 ◽  
Vol 9 (4) ◽  
pp. 700 ◽  
Author(s):  
Jing Liu ◽  
Jingbing Li ◽  
Jixin Ma ◽  
Naveed Sadiq ◽  
Uzair Bhatti ◽  
...  

To resolve the contradiction between existing watermarking methods—which are not compatible with the watermark’s ability to resist geometric attacks—and robustness, a robust multi-watermarking algorithm suitable for medical images is proposed. First, the visual feature vector of the medical image was obtained by dual-tree complex wavelet transform and discrete cosine transform (DTCWT-DCT) to perform multi-watermark embedding and extraction. Then, the multi-watermark was preprocessed using the henon map chaotic encryption technology to strengthen the security of watermark information, and combined with the concept of zero watermark to make the watermark able to resist both conventional and geometric attacks. Experimental results show that the proposed algorithm can effectively extract watermark information; it implements zero watermarking and blind extraction. Compared with existing watermark technology, it has good performance in terms of its robustness and resistance to geometric attacks and conventional attacks, especially in geometric attacks.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wenbing Wang ◽  
Yan Li ◽  
Shengli Liu

Zero-watermarking is one of the solutions for image copyright protection without tampering with images, and thus it is suitable for medical images, which commonly do not allow any distortion. Moment-based zero-watermarking is robust against both image processing and geometric attacks, but the discrimination of watermarks is often ignored by researchers, resulting in the high possibility that host images and fake host images cannot be distinguished by verifier. To this end, this paper proposes a PCET- (polar complex exponential transform-) based zero-watermarking scheme based on the stability of the relationships between moment magnitudes of the same order and stability of the relationships between moment magnitudes of the same repetition, which can handle multiple medical images simultaneously. The scheme first calculates the PCET moment magnitudes for each image in an image group. Then, the magnitudes of the same order and the magnitudes of the same repetition are compared to obtain the content-related features. All the image features are added together to obtain the features for the image group. Finally, the scheme extracts a robust feature vector with the chaos system and takes the bitwise XOR of the robust feature and a scrambled watermark to generate a zero-watermark. The scheme produces robust features with both resistance to various attacks and low similarity among different images. In addition, the one-to-many mapping between magnitudes and robust feature bits reduces the number of moments involved, which not only reduces the computation time but also further improves the robustness. The experimental results show that the proposed scheme meets the performance requirements of zero-watermarking on the robustness, discrimination, and capacity, and it outperforms the state-of-the-art methods in terms of robustness, discrimination, and computational time under the same payloads.


Sign in / Sign up

Export Citation Format

Share Document