Neighborhood search based improved bat algorithm for data clustering

Author(s):  
Arvinder Kaur ◽  
Yugal Kumar
Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 786
Author(s):  
Yenny Villuendas-Rey ◽  
Eley Barroso-Cubas ◽  
Oscar Camacho-Nieto ◽  
Cornelio Yáñez-Márquez

Swarm intelligence has appeared as an active field for solving numerous machine-learning tasks. In this paper, we address the problem of clustering data with missing values, where the patterns are described by mixed (or hybrid) features. We introduce a generic modification to three swarm intelligence algorithms (Artificial Bee Colony, Firefly Algorithm, and Novel Bat Algorithm). We experimentally obtain the adequate values of the parameters for these three modified algorithms, with the purpose of applying them in the clustering task. We also provide an unbiased comparison among several metaheuristics based clustering algorithms, concluding that the clusters obtained by our proposals are highly representative of the “natural structure” of data.


2019 ◽  
Vol 11 (9) ◽  
pp. 1036 ◽  
Author(s):  
Md Saifuzzaman ◽  
Viacheslav Adamchuk ◽  
Roberto Buelvas ◽  
Asim Biswas ◽  
Shiv Prasher ◽  
...  

Remote sensing (RS) and proximal soil sensing (PSS) technologies offer an advanced array of methods for obtaining soil property information and determining soil variability for precision agriculture. A large amount of data collected by these sensors may provide essential information for precision or site-specific management in a production field. Data clustering techniques are crucial for data mining, and high-density data analysis is important for field management. A new clustering technique was introduced and compared with existing clustering tools to determine the relatively homogeneous parts of agricultural fields. A DUALEM-21S sensor, along with high-accuracy topography data, was used to characterize soil variability in three agricultural fields situated in Ontario, Canada. Sentinel-2 data assisted in quantifying bare soil and vegetation indices (VIs). The custom Neighborhood Search Analyst (NSA) data clustering tool was implemented using Python scripts. In this algorithm, part of the variance of each data layer is accounted for by subdividing the field into smaller, relatively homogeneous, areas. The algorithm’s attributes were illustrated using field elevation, shallow and deep apparent electrical conductivity (ECa), and several VIs. The unique feature of this proposed protocol was the successful development of user-friendly and open source options for defining the spatial continuity of each group and for use in the zone delineation process.


Sign in / Sign up

Export Citation Format

Share Document