magnetic charge
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 53)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Vol 2022 (01) ◽  
pp. 009
Author(s):  
M. Okyay ◽  
A. Övgün

Abstract In this paper, we discuss the effects of nonlinear electrodynamics (NED) on non-rotating black holes, parametrized by the field coupling parameter β and magnetic charge parameter P in detail. Particularly, we survey a large range of observables and physical properties of the magnetically charged black hole, including the thermodynamic properties, observational appearance, quasinormal modes and absorption cross sections. Initially, we show that the NED black hole is always surrounded by an event horizon and any magnetic charge is permissible. We then show that the black hole gets colder with increasing charge. Investigating the heat capacity, we see that the black hole is thermally stable between points of phase transition. Introducing a generalized uncertainty principle (GUP) with a quantum gravity parameter λ extends the range of the stable region, but the effect on temperature is negligible. Then we compute the deflection angle at the weak field limit, by the Gauss-Bonnet theorem and the geodesic equation, and find that even at the first order, the magnetic charge has a contribution due to the “field mass” term. Small changes of the charge contributes greatly to the paths of null geodesics due to the P 2 dependence of the horizon radius. Using a ray-tracing code, we simulate the observational appearance of a NED black hole under different emission profiles, thin disk and spherical accretion. We find that the parameter P has a very strong effect on the observed shadow radius, in agreement with the deflection angle calculations. We finally consider quasinormal modes under massless scalar perturbations of the black hole and the greybody factor. We find that the charge introduces a slight difference in the fundamental frequency of the emitted waveform. We find that the greybody factor of the NED black hole is strongly steepened by the introduction of increasing charge. To present observational constrains, we show that the magnetic charge of the M87* black hole is between 0 ≤ P ≤ 0.024 in units of M, in agreement with the idea that real astrophysical black holes are mostly neutral. We also find that LIGO/VIRGO and LISA could detect NED black hole perturbations from BHs with masses between 5 M ☉ and 8.0 · 108 M ☉. We finally show that for black holes with masses detected with LIGO so far, charged NED black holes would deviate from Schwarzschild by 5∼10 Hz in their fundamental frequencies.


Author(s):  
Bilyana Lyudmilova Tomova

Abstract In this paper we study the magnetic charges of the free massless Rarita-Schwinger field in four dimensional asymptotically flat space-time. This is the first step towards extending the study of the dual BMS charges to supergravity. The magnetic charges appear due to the addition of a boundary term in the action. This term is similar to the theta term in Yang-Mills theory. At null-infinity an infinite dimensional algebra is discovered, both for the electric and magnetic charge.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Bo Li ◽  
Jun-an Zhang ◽  
Zhiping Shi ◽  
Xiaolong Zhao ◽  
Hao Dong

The air gap magnetic field (AGMF) is the key factor in determining the ironless tubular permanent magnet synchronous linear motor (ITPMSLM). The distortion of its waveform causes thrust fluctuation during the operation of the motor, resulting in poor machining accuracy of the machine tool. To solve this problem, this paper proposes a new chamfered permanent magnet structure (CPMS) to improve its performance. First, the equivalent magnetic charge method is used to analyze the AGMF, and the analytical expressions of the no-load back EMF and thrust of the new motor are obtained. Second, the AGMF of six kinds of CPMS is analyzed by the Fourier coefficient. Taking the minimum harmonic distortion rate as the optimization objective, the CPMS that makes the AGMF waveform reach the best sinusoidal property is obtained and the no-load back EMF and thrust of the new motor are analyzed. Then, the new motor is compared with the ITPMSLM of rectangle permanent magnet structures (RPMS). Finally, according to the CPMS, the test prototype is built and tested under different working conditions. The research results show that when the outer circumference is 45o chamfered, the ratio of permanent magnet thickness h2 to the chamfered thickness h1 is 0.8; the sinusoidal property of AGMF is the best, and this structure can effectively reduce the motor thrust fluctuation rates to less than 0.01%, which verifies the effectiveness of the CPMS in improving the sinusoidal property in the AGMF and restraining the thrust fluctuation of the ITPMLSM.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Brett McInnes

Abstract The Weak Gravity Conjecture arises from the assertion that all extremal black holes, even those which are “classical” in the sense of being very massive, must decay by quantum-mechanical emission of particles or smaller black holes. This is interesting, because some observed astrophysical black holes are on the brink of being extremal — though this is due to rapid rotation rather than a large electric or magnetic charge. The possibility that rotating near-extremal black holes might, in addition to radiating spinning particles, also bifurcate by emitting smaller black holes, has attracted much attention of late. There is, however, a basic question to be answered here: can such a bifurcation be compatible with the second law of thermodynamics? This is by no means clear. Here we show that, if there is indeed such a mechanism for bifurcations of AdS4-Kerr-Newman black holes, then this process can in fact satisfy the second law.


2021 ◽  
Author(s):  
Nattapol Ma ◽  
Ryo Ohtani ◽  
Hung M. Le ◽  
Ryuta Ishikawa ◽  
Satoshi Kawata ◽  
...  

Prussian blue analogues (PBAs), a class of microporous crystalline coordination frameworks, are long known for their diverse properties in porosity, magnetic, charge transport, catalysis, optics, and more. Versatile structural composition and the ability to control defect ordering through synthetic conditions offer opportunities to manipulate the functionality in the crystalline state. However, developments in Prussian blue analogues (PBAs) have primarily revolved around the ordered crystalline state, and the glassy state of PBAs has not yet been explored. Here we report the discovery of a disordered glassy state of the PBA via mechanically induced crystal–glass transformation. We found the preservation of metal–ligand–metal connectivity, confirming the short-range order and semiconductor behaviour, exhibiting an electronic conductivity value of 0.31 mS cm−1 at 50 ˚C. Mechanical-induced glass transformation also triggers changes in electronic states, where electroneutrality is compensated by introducing unconventional CN− vacancies. Partial disorders and ligand vacancies in recrystallized PBA give rise to an enhanced porosity, inaccessible in the crystalline parent. The present work also established a correlation between the mechanical stress required to initiate crystal–glass transformation and intrinsic mechanical properties, which are controlled by the vacancy/defect content, the presence of interstitial water, and the overall composition of PBAs.


2021 ◽  
Author(s):  
Tongzheng Wang ◽  
Wei-Liang Qian ◽  
Juan Fernando Zapata Zapata ◽  
Kai Lin

Abstract This work explores the scalar and Dirac quasinormal modes pertaining to a class of black hole solutions in the scalar-tensor-Gauss-Bonnet theory. The black hole metrics in question are novel analytic solutions recently derived in the extended version of the latter theory, which effectively follows at the level of the action of string theory. Owing to the existence of a nonlinear electromagnetic field, the black hole solution possesses a nonvanishing magnetic charge. In particular, the metric is capable of describing black holes with distinct characteristics by assuming different values of the ADM mass and the magnetic charge. The present study is devoted to investigating the scalar and Dirac perturbations in the above black hole spacetimes, and in particular, based on distinct horizon structures, we focus on two different types of solutions. The properties of the complex frequencies of the obtained dissipative oscillations are investigated, and subsequently, the stability of the metric is addressed. We elaborate on the possible implications of the present study.


Author(s):  
Wajiha Javed ◽  
Muhammad Aqib ◽  
Ali Övgün

The objective of this paper is to analyze the weak deflection angle of Einstein-Gauss-Bonnet gravity in the presence of plasma medium. To attain our results, we implement the Gibbons and Werner approach and use the Gauss-Bonnet theorem to Einstein gravity to acquire the resulting deflection angle of photon's ray in the weak field limit. Moreover, we illustrate the behavior of plasma medium and non-plasma mediums on the deflection of photon's ray in the framework of Einstein-Gauss-Bonnet gravity. Similarly, we observe the graphical influences of deflection angle on Einstein-Gauss-Bonnet gravity with the consideration of both plasma and non-plasma mediums. Later, we observe the rigorous bounds phenomenon of the greybody factor in contact with Einstein-Gauss-Bonnet gravity and calculate the outcomes, analyze graphically for specific values of parameters.


2021 ◽  
Vol 104 (10) ◽  
Author(s):  
Martin Bojowald ◽  
Suddhasattwa Brahma ◽  
Umut Büyükçam ◽  
Martijn van Kuppeveld

2021 ◽  
pp. 100574
Author(s):  
George Yumnam ◽  
Jiasen Guo ◽  
Yiyao Chen ◽  
Ashutosh Dahal ◽  
Poushali Ghosh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document