scholarly journals Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares

2013 ◽  
Vol 348 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Tamal Basak ◽  
Sandip K. Chakrabarti
2019 ◽  
Vol 37 (4) ◽  
pp. 747-761 ◽  
Author(s):  
Veronika Barta ◽  
Gabriella Sátori ◽  
Kitti Alexandra Berényi ◽  
Árpád Kis ◽  
Earle Williams

Abstract. We have investigated the solar flare effects on ionospheric absorption with the systematic analysis of ionograms measured at midlatitude and low-latitude ionosonde stations under different solar zenith angles. The lowest recorded ionosonde echo, the minimum frequency (fmin, a qualitative proxy for the “nondeviative” radio wave absorption occurring in the D-layer), and the dfmin parameter (difference between the value of the fmin and the mean fmin for reference days) have been considered. Data were provided by meridionally distributed ionosonde stations in Europe and South Africa during eight X- and M-class solar flares in solar cycle 23. Total and partial radio fade-out was experienced at every ionospheric station during intense solar flares (> M6). The duration of the total radio fade-out varied between 15 and 150 min and it was highly dependent on the solar zenith angle of the ionospheric stations. Furthermore, a solar-zenith-angle-dependent enhancement of the fmin (2–9 MHz) and dfmin (1–8 MHz) parameters was observed at almost every station. The fmin and dfmin parameters show an increasing trend with the enhancement of the X-ray flux. Based on our results, the dfmin parameter is a good qualitative measure for the relative variation of the “nondeviative” absorption, especially in the case of the less intense solar flares, which do not cause total radio fade-out in the ionosphere (class < M6).


2018 ◽  
Vol 62 ◽  
pp. 01012
Author(s):  
Akihiro Ikeda ◽  
Teiji Uozumi ◽  
Akimasa Yoshikawa ◽  
Akiko Fujimoto ◽  
Shuji Abe

We examined the Schumann resonance (SR) at low-latitude station KUJ by comparing with solar X-ray flux and solar proton flux at a geostationary orbit. For intense solar activity in October-November 2003, the reaction of the SR frequency to X-ray enhancement and SPEs was different. The SR frequency in H component increased at the time of the Xray enhancement. The response of SR seems to be caused by the increase of the electron density in the ionospheric D region which ionized by the enhanced solar X-ray flux. In the case of the SPEs, the SR frequency in D component decreased with enhancement of solar proton flux. We suggest that the SPEs caused the decrease of altitude on the ionopheric D region at high-latitude region, and the SR frequency decreased.


Solar Physics ◽  
1985 ◽  
Vol 97 (1) ◽  
pp. 107-112
Author(s):  
V. K. Verma ◽  
M. C. Pande
Keyword(s):  

2014 ◽  
Vol 356 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Sourav Palit ◽  
Tamal Basak ◽  
Sujay Pal ◽  
Sandip K. Chakrabarti

2014 ◽  
Vol 119 (8) ◽  
pp. 6865-6875 ◽  
Author(s):  
Neil R. Thomson ◽  
Mark A. Clilverd ◽  
Craig J. Rodger

1995 ◽  
Vol 13 (10) ◽  
pp. 1117-1123 ◽  
Author(s):  
B. K. De ◽  
S. K. Sarkar

Abstract. Anomalous propagational characteristics, daytime signal levels greater than night-time, were observed. The amplitude records of a 40-kHz signal propagated over a distance of 5100 km from Sanwa, Japan to Calcutta along a low-latitude path show higher signal strength at midday compared to the midnight level on days preceded by principal geomagnetic storms, earthquakes and major meteor showers. This is explained by the increased ionization in the D-region following geophysical events. The storm after-effects only have a duration of a single day in this low-latitude path.


2009 ◽  
Vol 27 (10) ◽  
pp. 3713-3724 ◽  
Author(s):  
A. Osepian ◽  
S. Kirkwood ◽  
P. Dalin ◽  
V. Tereschenko

Abstract. Accurate measurements of electron density in the lower D-region (below 70 km altitude) are rarely made. This applies both with regard to measurements by ground-based facilities and by sounding rockets, and during both quiet conditions and conditions of energetic electron precipitation. Deep penetration into the atmosphere of high-energy solar proton fluxes (during solar proton events, SPE) produces extra ionisation in the whole D-region, including the lower altitudes, which gives favourable conditions for accurate measurements using ground-based facilities. In this study we show that electron densities measured with two ground-based facilities at almost the same latitude but slightly different longitudes, provide a valuable tool for validation of model computations. The two techniques used are incoherent scatter of radio waves (by the EISCAT 224 MHz radar in Tromsø, Norway, 69.6° N, 19.3° E), and partial reflection of radio-waves (by the 2.8 MHz radar near Murmansk, Russia, 69.0° N, 35.7° E). Both radars give accurate electron density values during SPE, from heights 57–60 km and upward with the EISCAT radar and between 55–70 km with the partial reflection technique. Near noon, there is little difference in the solar zenith angle between the two locations and both methods give approximately the same values of electron density at the overlapping heights. During twilight, when the difference in solar zenith angles increases, electron density values diverge. When both radars are in night conditions (solar zenith angle >99°) electron densities at the overlapping altitudes again become equal. We use the joint measurements to validate model computations of the ionospheric parameters f+, λ, αeff and their variations during solar proton events. These parameters are important characteristics of the lower ionosphere structure which cannot be determined by other methods.


Sign in / Sign up

Export Citation Format

Share Document