radio wave absorption
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 11 (23) ◽  
pp. 11490
Author(s):  
Seiki Chiba ◽  
Mikio Waki

Using a sample coated with three types of carbon-based paints, namely single-wall carbon nanotube (SWCNTs), carbon black, and graphite, the amount of radio wave absorption for each was measured. SWCNTs proved to have the superior radio wave absorption effect in the millimeter band. Considering the change in the amount of radio wave absorption depending on the coating amount, three different coating thicknesses were prepared for each test material. The measurement frequency was set to two frequency bands of 28 GHz and 75 GHz, and the measurement method was carried out based on Japanese Industrial Standard (JIS) R1679 “Radio wave absorption characteristic measurement method in the millimeter wave band of the radio wave absorber.” As for the amount of radio wave absorption in the 28 GHz band, a maximum amount of radio wave absorption of about 6 dB was obtained when 35 m of CNT spray paint was applied. It was confirmed that the carbon black paint came to about 60% that of the SWCNT, and the graphite paint did not obtain much radio wave absorption even when the coating thickness was changed. Furthermore, even in the 75 GHz band, the radio wave absorption was about 7 dB when 16 μm of CNT spray paint was applied, showing the maximum value. Within these experimental results, the CNT spray paint has a higher amount of radio wave absorption in the millimeter wave band than paints using general carbon materials. Its effectiveness could be confirmed even with a very thin coating thickness of 35 μm or less. It was also confirmed that even with the same paint, the radio wave absorption effect changes depending on the difference in coating thickness and the condition of the coated surface.


2021 ◽  
Author(s):  
Derek McKay ◽  
Juha Vierinen ◽  
Antti Kero ◽  
Noora Partamies

Abstract. Radio wave absorption in the ionosphere is a function of electron density, collision frequency, radio wave polarisation, magnetic field and radio wave frequency. Several studies have used multi-frequency measurements of cosmic radio noise absorption to determine electron density profiles. Using the framework of statistical inverse problems, we investigated if an electron density altitude profile can be determined by using multi-frequency, dual-polarisation measurements. It was found that the altitude profile cannot be uniquely determined from a complete measurement of radio wave absorption for all frequencies and two polarisation modes. This implies that accurate electron density profile measurements cannot be ascertained using multi-frequency riometer data alone, but that the reconstruction requires a strong additional a priori assumption of the electron density profile, such as a parameterised model for the ionisation source. Nevertheless, the spectral index of the absorption could be used to determine if there is a significant component of hard precipitation that ionises the lower part of the D region, but it is not possible to infer the altitude distribution uniquely with this technique alone.


2021 ◽  
Author(s):  
Margaretha Myrvang ◽  
Carsten Baumann ◽  
Ingrid Mann

Abstract. We investigate if the presence of meteoric smoke particles (MSP) influences the electron temperature during artfical heating in the D-region. The presence of MSP can result in height regions with reduced electron density, so-called electron bite-outs, due to charging of MSP by electrons. Artificial heating depends on the height variation of electron density. By transferring the energy of powerful high frequency radio waves into thermal energy of electrons, artificial heating increases the electron temperature. We simulate the influence of the artificial heating by calculating the intensity of the upward propagating radio wave. The electron temperature at each height is derived from the balance of radio wave absorption and cooling through elastic and inelastic collisions with neutral species. The influence of MSP is investigated by including results from a one-dimensional height-dependent ionospheric model that includes electrons, positively and negatively charged ions, neutral MSP, singly positively and singly negatively charged MSP and photo chemistry such as photo ionization and photo detachment. We apply typical ionospheric conditions and find that MSP can influence both the magnitude and the height profile of the heated electron temperature above 80 km, however this depends on ionospheric conditions. During night, the presence of MSP leads to more efficient heating, and thus a higher electron temperature, above altitudes of 80 km. We found differences up to 1000 K in temperature for calculations with and without MSP. When MSP are present, the heated electron temperature decreases more slowly. The presence of MSP does not much affect the heating below 80 km for night conditions. For day conditions, the difference between the heated electron temperature with MSP and without MSP is less than 25 K.


2020 ◽  
Author(s):  
Attila Buzas ◽  
Veronika Barta ◽  
Daniel Kouba

<p>The most intense external force affecting the ionosphere from above is related to large solar flare events, therefore it is of particular importance to study their impact on the ionosphere. During solar flares, the suddenly increased radiation causes increased ionization and enhanced absorption of radio waves leading to partial or even total radio fade-out lasting for hours in some cases (e. g. [1] [2]).</p><p> </p><p>The ionospheric response to large solar flares have been investigated using the ionosonde data measured at Pruhonice (PQ052, 50°, 14.5°) in September 2017, the most active solar period of Solar Cycle 24. A novel method [3] to calculate and investigate the absorption of radio waves propagating in the ionosphere is used to determine the absorption during large solar flare events (M and X class). Subsequently, the absorption data are compared with the indicators derived from the f<sub>min</sub> method (f<sub>min</sub>, the minimum frequency is considered as a qualitative proxy for the “nondeviative” radio wave absorption occurring in the D-layer). Total and partial radio fade-out and increased values (with 2-5 MHz) of the f<sub>min</sub> parameter were experienced during and after the intense solar flares (> M3). The combination of these two methods may prove to be an efficient approach to monitor the ionospheric response to solar flares.</p><p> </p><p>[1] Sripathi, S., Balachandran, N., Veenadhari, B., Singh, R., and Emperumal, K.: Response of the equatorial and low-latitude ionosphere to an intense X-class solar flare (X7/2B) as observed on 09 August 2011, J. Geophys. Res.-Space, 118, 2648–2659, 2013.</p><p>[2] Barta, V., Sátori, G., Berényi, K. A., Kis, Á., and Williams, E. (2019). Effects of solar flares on the ionosphere as shown by the dynamics of ionograms recorded in Europe and South Africa. Annales Geophysicae, Vol. 37, No. 4, pp. 747-761</p><p>[3] Sales, G. S., 2009, HF absorption measurements using routine digisonde data, Conference material, XII. International Digisonde Forum, University of Massachusetts</p>


2019 ◽  
Vol 37 (4) ◽  
pp. 747-761 ◽  
Author(s):  
Veronika Barta ◽  
Gabriella Sátori ◽  
Kitti Alexandra Berényi ◽  
Árpád Kis ◽  
Earle Williams

Abstract. We have investigated the solar flare effects on ionospheric absorption with the systematic analysis of ionograms measured at midlatitude and low-latitude ionosonde stations under different solar zenith angles. The lowest recorded ionosonde echo, the minimum frequency (fmin, a qualitative proxy for the “nondeviative” radio wave absorption occurring in the D-layer), and the dfmin parameter (difference between the value of the fmin and the mean fmin for reference days) have been considered. Data were provided by meridionally distributed ionosonde stations in Europe and South Africa during eight X- and M-class solar flares in solar cycle 23. Total and partial radio fade-out was experienced at every ionospheric station during intense solar flares (> M6). The duration of the total radio fade-out varied between 15 and 150 min and it was highly dependent on the solar zenith angle of the ionospheric stations. Furthermore, a solar-zenith-angle-dependent enhancement of the fmin (2–9 MHz) and dfmin (1–8 MHz) parameters was observed at almost every station. The fmin and dfmin parameters show an increasing trend with the enhancement of the X-ray flux. Based on our results, the dfmin parameter is a good qualitative measure for the relative variation of the “nondeviative” absorption, especially in the case of the less intense solar flares, which do not cause total radio fade-out in the ionosphere (class < M6).


2019 ◽  
Author(s):  
Veronika Barta ◽  
Gabriella Sátori ◽  
Kitti Alexandra Berényi ◽  
Árpád Kis ◽  
Earle Williams

Abstract. Systematic analysis of ionosopheric parameters measured at mid- and low-latitudes was performed to study the ionospheric response to solar flares. The lowest recorded ionosonde echo, the mimimum frequency (fmin, a qualitative proxy for the nondeviative radio wave absorption occurring in the D-layer), furthermore the dfmin parameter (difference between the value of the fmin and the mean fmin for reference days) have been investigated. The time series of the fmin and dfmin parameters recorded at meridionally-distributed ionosonde stations in Europe and South Africa were analyzed during eight X and M class solar flares during solar cycle 23. The solar zenith angles of the observation sites at the time of the selected flares have been also taken into account. Total and partial radio fade-out was experienced at every ionospheric stations during intense solar flares (> M6). The duration of the total radio fade-out varied between 15 and 150 min and it was highly dependent on the solar zenith angle of the ionospheric stations. Furthermore, a solar zenith angle-dependent enhancement of the fmin (2–9 MHz) and dfmin (1–8 MHz) parameters was observed at almost every stations. The fmin and dfmin parameters show an increasing trend with the enhancement of the X-ray flux. Based on the results, the dfmin parameter is a good qualitative measure for the relative variation of the nondeviative absorption especially in the case of the less intense solar flares which do not cause total radio fade-out in the ionosphere (class 


Space Weather ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 115-130 ◽  
Author(s):  
David E. Siskind ◽  
K. A. Zawdie ◽  
F. Sassi ◽  
D. Drob ◽  
M. Friedrich

Sign in / Sign up

Export Citation Format

Share Document