Finite amplitude solitary structures of coupled kinetic Alfven-acoustic waves in dense plasmas

2014 ◽  
Vol 355 (2) ◽  
pp. 225-232 ◽  
Author(s):  
A. Sabeen ◽  
H. A. Shah ◽  
W. Masood ◽  
M. N. S. Qureshi
2020 ◽  
Vol 38 (1) ◽  
pp. 25-38
Author(s):  
J. Goswami ◽  
S. Chandra ◽  
J. Sarkar ◽  
S. Chaudhuri ◽  
B. Ghosh

AbstractThe theoretical investigation of shocks and solitary structures in a dense quantum plasma containing electrons at finite temperature, nondegenerate cold electrons, and stationary ions has been carried out. A linear dispersion relation is derived for the corresponding electron acoustic waves. The solitary structures of small nonlinearity have been studied by using the standard reductive perturbation method. We have considered collisions to be absent, and the shocks arise out of viscous force. Furthermore, with the help of a standard reductive perturbation technique, a KdV–Burger equation has been derived and analyzed numerically. Under limiting cases, we have also obtained the KdV solitary profiles and studied the parametric dependence. The results are important in explaining the many phenomena of the laser–plasma interaction of dense plasma showing quantum effects.


2001 ◽  
Author(s):  
Robert Erickson ◽  
Nikos Markopoulos ◽  
Ben Zinn

1997 ◽  
Vol 346 ◽  
pp. 271-290 ◽  
Author(s):  
A. P. DOWLING

Self-excited oscillations of a confined flame, burning in the wake of a bluff-body flame-holder, are considered. These oscillations occur due to interaction between unsteady combustion and acoustic waves. According to linear theory, flow disturbances grow exponentially with time. A theory for nonlinear oscillations is developed, exploiting the fact that the main nonlinearity is in the heat release rate, which essentially ‘saturates’. The amplitudes of the pressure fluctuations are sufficiently small that the acoustic waves remain linear. The time evolution of the oscillations is determined by numerical integration and inclusion of nonlinear effects is found to lead to limit cycles of finite amplitude. The predicted limit cycles are compared with results from experiments and from linear theory. The amplitudes and spectra of the limit-cycle oscillations are in reasonable agreement with experiment. Linear theory is found to predict the frequency and mode shape of the nonlinear oscillations remarkably well. Moreover, we find that, for this type of nonlinearity, describing function analysis enables a good estimate of the limit-cycle amplitude to be obtained from linear theory.Active control has been successfully applied to eliminate these oscillations. We demonstrate the same effect by adding a feedback control system to our nonlinear model. This theory is used to explain why any linear controller capable of stabilizing the linear flow disturbances is also able to stabilize finite-amplitude oscillations in the nonlinear limit cycles.


Sign in / Sign up

Export Citation Format

Share Document