Nonlinear self-excited oscillations of a ducted flame

1997 ◽  
Vol 346 ◽  
pp. 271-290 ◽  
Author(s):  
A. P. DOWLING

Self-excited oscillations of a confined flame, burning in the wake of a bluff-body flame-holder, are considered. These oscillations occur due to interaction between unsteady combustion and acoustic waves. According to linear theory, flow disturbances grow exponentially with time. A theory for nonlinear oscillations is developed, exploiting the fact that the main nonlinearity is in the heat release rate, which essentially ‘saturates’. The amplitudes of the pressure fluctuations are sufficiently small that the acoustic waves remain linear. The time evolution of the oscillations is determined by numerical integration and inclusion of nonlinear effects is found to lead to limit cycles of finite amplitude. The predicted limit cycles are compared with results from experiments and from linear theory. The amplitudes and spectra of the limit-cycle oscillations are in reasonable agreement with experiment. Linear theory is found to predict the frequency and mode shape of the nonlinear oscillations remarkably well. Moreover, we find that, for this type of nonlinearity, describing function analysis enables a good estimate of the limit-cycle amplitude to be obtained from linear theory.Active control has been successfully applied to eliminate these oscillations. We demonstrate the same effect by adding a feedback control system to our nonlinear model. This theory is used to explain why any linear controller capable of stabilizing the linear flow disturbances is also able to stabilize finite-amplitude oscillations in the nonlinear limit cycles.

Author(s):  
Frédéric Boudy ◽  
Daniel Durox ◽  
Thierry Schuller ◽  
Grunde Jomaas ◽  
Sébastien Candel

A recently developed nonlinear flame describing function (FDF) is used to analyze combustion instabilities in a system where the feeding manifold has a variable size and where the flame is confined by quartz tubes of variable length. Self-sustained combustion oscillations are observed when the geometry is changed. The regimes of oscillation are characterized at the limit cycle and also during the onset of oscillations. The theoretical predictions of the oscillation frequencies and levels are obtained using the FDF. This generalizes the concept of flame transfer function by including dependence on the frequency and level of oscillation. Predictions are compared with experimental results for two different lengths of the confinement tube. These results are, in turn, used to predict most of the experimentally observed phenomena and in particular, the correct oscillation levels and frequencies at limit cycles.


Author(s):  
Fre´de´ric Boudy ◽  
Daniel Durox ◽  
Thierry Schuller ◽  
Grunde Jomaas ◽  
Se´bastien Candel

A recently developed nonlinear Flame Describing Function (FDF) is used to analyze combustion instabilities in a system where the feeding manifold has a variable size and where the flame is confined by quartz tubes of variable length. Self-sustained combustion oscillations are observed when the geometry is changed. Regimes of oscillation are characterized at the limit cycle and also during the onset of oscillations. Theoretical predictions of the oscillation frequencies and levels are obtained using the FDF. This generalizes the concept of flame transfer function by including a dependence on the frequency and on the level of oscillation. Predictions are compared with experimental results for two different lengths of the confinement tube. These results are in turn used to predict most of the experimentally observed phenomena and in particular the correct oscillation levels and frequencies at limit cycles.


Author(s):  
Frédéric Boudy ◽  
Daniel Durox ◽  
Thierry Schuller ◽  
Sébastien Candel

Nonlinear prediction of combustion instabilities in premixed systems is undertaken on a generic configuration featuring an adjustable feeding manifold length, a multipoint injector composed of a perforated plate and a flame confinement tube. By changing the feeding manifold or flame tube lengths, the system exhibits different types of combustion regimes for the same flow operating conditions. Velocity, pressure and heat release rate measurements are used to examine oscillations during unstable operation. For many operating conditions, a limit cycle is reached at an essentially fixed oscillation frequency and quasi-constant amplitude. In another set of cases, the system features other types of oscillations characterized by multiple frequencies, amplitude modulation and irregular bursts which can be designated by “galloping” limit cycles or GLC. These situations are explored in this article. Imaging during GLCs indicates that the flame is globally oscillating but that the cycle is irregular. Prediction of these special oscillation states is tackled within the Flame Describing Function (FDF) framework. It is shown that it is possible to predict with a reasonable degree of agreement the ranges where a quasi-constant amplitude limit cycle will be established and ranges where the oscillation will be less regular and take the form of a galloping limit cycle. It is found that the FDF analysis also provides indications on the bounding levels of the oscillation envelope in the latter case.


Author(s):  
Simon R. Stow ◽  
Ann P. Dowling

Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from gas turbines, but often leads to combustion instability. Acoustic waves produce fluctuations in heat release, for instance by perturbing the fuel-air ratio. These heat fluctuations will in turn generate more acoustic waves and in some situations self-sustained oscillations can form. The resulting limit cycles can have large amplitude causing structural damage. Thermoacoustic oscillations will have a low amplitude initially. Thus linear models can give stability predictions. An unstable linear mode will grow in amplitude until nonlinear effects become important and a limit cycle is achieved. While the frequency of the linear mode can provide a good approximation to that of the resulting limit cycle, linear theories give no prediction of its amplitude. A low-order model for thermoacoustic limit cycles in LPP combustors is described. The approach is based on the fact that the main nonlinearity is in the combustion response to flow perturbations. In LPP combustion, fluctuations in the inlet fuel-air ratio have been shown to be the dominant cause of unsteady combustion: these occur because velocity perturbations in the premix ducts cause a time-varying fuel-air ratio, which then convects downstream. If the velocity perturbation becomes comparable to the mean flow, there will be an amplitude-dependent effect on the equivalence ratio fluctuations entering the combustor and hence on the rate of heat release. A simple nonlinear flame model for this dependence is developed and is assumed to be the major non-linear effect on the limit cycle. Since the Mach number is low, the velocity perturbation can be comparable to the mean flow, with even reverse flow occurring, while the disturbances are still acoustically linear in that the pressure perturbation is still much smaller than the mean. Hence elsewhere the perturbations are treated as linear. In this nonlinear flame model, the flame transfer function describing the combustion response to changes in inlet flow is a function of both frequency and amplitude. The nonlinear flame transfer function is incorporated into a linear thermoacoustic network model for plane waves. Frequency, amplitude and modeshape predictions are compared with results from an atmospheric test rig. The approach is extended to circumferential waves in a thin annular geometry, where the nonlinearity leads to modal coupling.


1994 ◽  
Vol 04 (05) ◽  
pp. 1319-1328 ◽  
Author(s):  
WILLIAM B. ZIMMERMAN

The linear stability theory of Tan & Homsy [1986] is extended to include the effects of weak nonlinear coupling between mass flux and viscous effects when the viscous fingers grow from a slowly diffusing, nearly flat displacement front. A regular perturbation scheme combined with a similarity-separation of variables technique leads to a Landau equation for the amplitude of the disturbance. The Landau constant has a simple pole for a given wavenumber within the linear theory cutoff wavenumber for growth. An argument is given that this pole leads to pairing of fingers while the instability remains small. Comparison of the length scale of the pole of the Landau constant with experimental measurements of finger scale shows good agreement where plausibly finite-amplitude effects might come into play, but with the linear theory otherwise.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.


2013 ◽  
Vol 18 (5) ◽  
pp. 708-716 ◽  
Author(s):  
Svetlana Atslega ◽  
Felix Sadyrbaev

The Liénard type equation x'' + f(x, x')x' + g(x) = 0 (i) is considered. We claim that if the associated conservative equation x'' + g(x) = 0 has period annuli then a dissipation f(x, x') exists such that a limit cycle of equation (i) exists in a selected period annulus. Moreover, it is possible to define f(x, x') so that limit cycles appear in all period annuli. Examples are given. A particular example presents two limit cycles of non-convex shape in two disjoint period annuli.


2007 ◽  
Vol 17 (03) ◽  
pp. 953-963 ◽  
Author(s):  
XIAO-SONG YANG ◽  
YAN HUANG

In this paper we demonstrate chaos, two-tori and limit cycles in a new family of Cellular Neural Networks which is a one-dimensional regular array of four cells. The Lyapunov spectrum is calculated in a range of parameters, the bifurcation plots are presented as well. Furthermore, we confirm the nature of limit cycle, chaos and two-tori by studying Poincaré maps.


Sign in / Sign up

Export Citation Format

Share Document