solitary structures
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 20)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Debdatta Debnath ◽  
Anup Bandyopadhyay

Abstract At the acoustic speed, we have investigated the existence of ion-acoustic solitary structures including double layers and supersolitons in a collisionless magnetized plasma consisting of negatively charged static dust grains, adiabatic warm ions, and nonthermal electrons. At the acoustic speed, for negative polarity, the system supports solitons, double layers, supersoliton structures after the formation of double layer, supersoliton structures without the formation of double layer, solitons after the formation of double layer whereas the system supports solitons and supersolitons without the formation of double layer for the case of positive polarity. But it is not possible to get the coexistence of solitary structures (including double layers and supersolitons) of opposite polarities. For negative polarity, we have observed an important transformation viz., soliton before the formation of double layer → double layer → supersoliton → soliton after the formation of double layer whereas for both positive and negative polarities, we have observed the transformation from solitons to supersolitons without the formation of double layer. There does not exist any negative (positive) potential solitary structures within 0 < μ < μ c (μ c < μ < 1) and the amplitude of the positive (negative) potential solitary structure decreases for increasing (decreasing) μ and the solitary structures of both polarities collapse at μ = μ c, where μ c is a critical value of μ, the ratio of the unperturbed number density of electrons to that of ions. Similarly there exists a critical value β e2 of the nonthermal parameter β e such that the solitons of both polarities collapse at β e = β e2.


2021 ◽  
Vol 76 (5) ◽  
pp. 455-468
Author(s):  
Sandip Dalui ◽  
Sankirtan Sardar ◽  
Anup Bandyopadhyay

Abstract Using Sagdeev pseudo-potential technique, we have studied the arbitrary amplitude ion acoustic solitons, double layers and supersolitons in a collisionless plasma consisting of adiabatic warm ions, non-thermal hot electrons and isothermal cold electrons immersed in an external uniform static magnetic field. We have used the phase portraits of the dynamical system describing the non-linear behaviour of ion acoustic waves to confirm the existence of different solitary structures. We have found that the system supports (a) positive potential solitons, (b) negative potential solitons, (c) coexistence of both positive and negative potential solitons, (d) negative potential double layers, (e) negative potential supersolitons and (f) positive potential supersolitons. Again, we have seen that the amplitude of the positive potential solitons decreases or increases with increasing n ch according to whether 0 < n c h < n c h ( c ) $0{< }{n}_{ch}{< }{n}_{ch}^{\left(c\right)}$ or n c h ( c ) < n c h ≤ 1 ${n}_{ch}^{\left(c\right)}{< }{n}_{ch}\le 1$ , where n c h ${n}_{ch}$ is the ratio of isothermal cold and non-thermal hot electron number densities, and n c h ( c ) ${n}_{ch}^{\left(c\right)}$ is a critical value of n ch . Also, we have seen that the amplitude of the positive potential solitons decreases with increasing β e , where β e is the non-thermal parameter. We have also investigated the transition of different negative potential solitary structures: negative potential soliton (before the formation of negative potential double layer) → negative potential double layer → negative potential supersoliton → negative potential soliton (after the formation of negative potential double layer) by considering the variation of θ only, where θ is angle between the direction of the external uniform static magnetic field and the direction of propagation of the ion acoustic wave.


2020 ◽  
Vol 95 (7) ◽  
pp. 075605
Author(s):  
Sidra Ali ◽  
W Masood ◽  
H Rizvi ◽  
Arshad M Mirza

Sign in / Sign up

Export Citation Format

Share Document