Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica

2020 ◽  
Vol 42 (6) ◽  
pp. 945-956 ◽  
Author(s):  
Xin-Kai Zhang ◽  
Dan-Ni Wang ◽  
Jun Chen ◽  
Zhi-Jie Liu ◽  
Liu-Jing Wei ◽  
...  
2019 ◽  
Author(s):  
N Milne ◽  
L R R Tramontin ◽  
I Borodina

ABSTRACT We present a teaching protocol suitable for demonstrating the use of EasyClone and CRISPR/Cas9 for metabolic engineering of industrially relevant yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, using β-carotene production as a case study. The protocol details all steps required to generate DNA parts, transform and genotype yeast, and perform a phenotypic screen to determine β-carotene production. The protocol is intended to be used as an instruction manual for a two-week practical course aimed at MSc and PhD students. The protocol details all necessary steps for students to engineer yeast to produce β-carotene and serves as a practical introduction to the principles of metabolic engineering including the concepts of boosting native precursor supply and alleviating rate-limiting steps. It also highlights key differences in the metabolism and heterologous production capacity of two industrially relevant yeast species. The protocol is divided into daily experiments covering a two week period and provides detailed instructions for every step meaning this protocol can be used ‘as is’ for a teaching course or as a case study for how yeast can be engineered to produce value-added molecules.


Author(s):  
Mengmeng Liu ◽  
Jin Zhang ◽  
Jingrun Ye ◽  
Qingsheng Qi ◽  
Jin Hou

Author(s):  
Lin Chen ◽  
Wei Yan ◽  
Xiujuan Qian ◽  
Minjiao Chen ◽  
Xiaoyu Zhang ◽  
...  

2013 ◽  
Vol 98 (1) ◽  
pp. 251-262 ◽  
Author(s):  
A. Beopoulos ◽  
J. Verbeke ◽  
F. Bordes ◽  
M. Guicherd ◽  
M. Bressy ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuxiao Xie ◽  
Shulin Chen ◽  
Xiaochao Xiong

Zeaxanthin is vital to human health; thus, its production has received much attention, and it is also an essential precursor for the biosynthesis of other critical carotenoids such as astaxanthin and crocetin. Yarrowia lipolytica is one of the most intensively studied non-conventional yeasts and has been genetically engineered as a cell factory to produce carotenoids such as lycopene and β-carotene. However, zeaxanthin production by Y. lipolytica has not been well investigated. To fill this gap, β-carotene biosynthesis pathway has been first constructed in this study by the expression of genes, including crtE, crtB, crtI, and carRP. Three crtZ genes encoding β-carotene hydroxylase from different organisms were individually introduced into β-carotene-producing Y. lipolytica to evaluate their performance for producing zeaxanthin. The expression of crtZ from the bacterium Pantoea ananatis (formerly Erwinia uredovora, Eu-crtZ) resulted in the highest zeaxanthin titer and content on the basis of dry cell weight (DCW). After verifying the function of Eu-crtZ for producing zeaxanthin, the high-copy-number integration into the ribosomal DNA of Y. lipolytica led to a 4.02-fold increase in the titer of zeaxanthin and a 721% increase in the content of zeaxanthin. The highest zeaxanthin titer achieved 21.98 ± 1.80 mg/L by the strain grown on a yeast extract peptone dextrose (YPD)–rich medium. In contrast, the highest content of DCW reached 3.20 ± 0.11 mg/g using a synthetic yeast nitrogen base (YNB) medium to culture the cells. Over 18.0 g/L of citric acid was detected in the supernatant of the YPD medium at the end of cultivation. Furthermore, the zeaxanthin-producing strains still accumulated a large amount of lycopene and β-carotene. The results demonstrated the potential of a cell factory for zeaxanthin biosynthesis and opened up an avenue to engineer this host for the overproduction of carotenoids.


2019 ◽  
Vol 190 (4) ◽  
pp. 1457-1469 ◽  
Author(s):  
Jayant Pralhad Rathod ◽  
Chaitali Vira ◽  
Arvind M. Lali ◽  
Gunjan Prakash

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Vijaydev Ganesan ◽  
Michael Spagnuolo ◽  
Ayushi Agrawal ◽  
Spencer Smith ◽  
Difeng Gao ◽  
...  

AbstractYarrowia lipolytica has emerged as a biomanufacturing platform for a variety of industrial applications. It has been demonstrated to be a robust cell factory for the production of renewable chemicals and enzymes for fuel, feed, oleochemical, nutraceutical and pharmaceutical applications. Metabolic engineering of this non-conventional yeast started through conventional molecular genetic engineering tools; however, recent advances in gene/genome editing systems, such as CRISPR–Cas9, transposons, and TALENs, has greatly expanded the applications of synthetic biology, metabolic engineering and functional genomics of Y. lipolytica. In this review we summarize the work to develop these tools and their demonstrated uses in engineering Y. lipolytica, discuss important subtleties and challenges to using these tools, and give our perspective on important gaps in gene/genome editing tools in Y. lipolytica.


Sign in / Sign up

Export Citation Format

Share Document