Long noncoding RNA SNHG1 protects brain microvascular endothelial cells against oxygen–glucose deprivation/reoxygenation-induced injury by sponging miR-298 and upregulating SIK1 expression

Author(s):  
Xinyu Zhou ◽  
Bingchao Xu ◽  
Yan Gu ◽  
Niu Ji ◽  
Pin Meng ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Song Zhang ◽  
Anqi Chen ◽  
Xiaolu Chen

Vascular endothelial growth factor (VEGF) plays a pivotal role in regulating cerebral angiogenesis after stroke. Meanwhile, excessive VEGF expression induces increased microvascular permeability in brain, probably leading to neurological deterioration. Therefore, the appropriate level of VEGF expression is significant to the recovery of brain exposed to stroke. In this work, we demonstrate that microRNA-150 (miR-150) and its predicted target MYB form a negative feedback loop to control the level of post-stroke VEGF expression. Repression of MYB leads to decreased expression of miR-150 in brain microvascular endothelial cells (BMVECs) exposed to oxygen glucose deprivation (OGD), thus miR-150 was predicted to be down-regulated by MYB. Moreover, MYB was confirmed to be a direct target of miR-150 by using dual luciferase reporter assay. In our previous work, we have validated VEGF as another direct target of miR-150. Therefore, MYB participates in regulation of VEGF via miR-150 under OGD, forming a feedback loop with miR-150. We also find that high levels of miR-150 inhibitors combined with MYB silence contribute to further enhancement of VEGF expression in BMVECs in response to OGD. These observations suggest that the feedback loop comprised of miR-150 and MYB, which is a pivotal endogenous epigenetic regulation to control the expression levels of VEGF in BMVECs subjected to OGD.


Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582091378
Author(s):  
Jun Leng ◽  
Wei Liu ◽  
Li Li ◽  
Fang Yue Wei ◽  
Meng Tian ◽  
...  

Objective: The objective of the present work was to study the role of Cxcl1 in cerebral ischemia–reperfusion (I/R) injury and to in-depth explore its pathogenesis. Methods: The expression of Cxcl1 based on the public data was analyzed. Then, we constructed an oxygen glucose deprivation/reoxygenation (OGD/R) model in vitro using mice brain microvascular endothelial cells (BMECs) to simulate cerebral I/R in vivo. Results: The results of quantitative real-time polymerase chain reaction assay uncovered that Cxcl1 showed higher expression while miR-429 showed lower expression in BMECs damaged by OGD/R, whereas overexpression of Cxcl1 or inhibition of miR-429 expression can strengthen this effect. Hereafter, through dual luciferase reporter assay, we verified that miR-429 directly targets Cxcl1 and negatively regulates Cxcl1 expression. Furthermore, the results also revealed that overexpression of Cxcl1 can reverse the miR-429-mediated effects. Conclusion: We concluded that miR-429 exerts protective effects against OGD/R-induce injury in vitro through modulation of Cxcl1 and nuclear factor kinase B pathway, hoping provide a new view on the pathogenesis of cerebral I/R injury and a feasible potential therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document