long non coding rna
Recently Published Documents


TOTAL DOCUMENTS

5909
(FIVE YEARS 4977)

H-INDEX

114
(FIVE YEARS 57)

2022 ◽  
Vol 12 (4) ◽  
pp. 747-755
Author(s):  
Shengyong Liu ◽  
Xiangcheng Li

Background: Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide with a poor prognosis. Amounting studies revealed that long non-coding RNAs (lncRNAs) show important roles in various biological processes. The purpose of this study was to explore the biological function and potential molecular mechanism of CASC7 in HCC. Methods: CASC7 expression in HCC cell lines was detected by qRT-PCR. The expressions of CASC7 and miR-340-5p were changed by transfection of miR-340-5p mimic, the CASC7 overexpression and knockdown plasmids. The interaction between CASC7 and miR-340-5p was assessed by a Dual-Luciferase reporter assay. The biological functions of CASC7 were evaluated by CCK-8, colony formation assay, ROS assay kit, immunofluorescence and flow cytometry (FCM). Results: CASC7 was upregulated in HCC cell lines. CASC7 overexpression significantly promoted cell proliferation, as well as inhibited apoptosis and oxidative stress. In contrast, CASC7 knockdown could reverse these above changes. The result of the Dual-luciferase reporter assay revealed that CASC7 directly targeted miR-340-5p and negatively regulated its expression. In addition, CASC7 promoted proliferation and inhibited apoptosis of HCC cells through activating Nrf2 pathway by downregulating miR-340-5p. Conclusions: In summary, CASC7 promotes HCC tumorigenesis and progression through the Nrf2 pathway by targeting miR-340-5p, which may provide a new target for therapy of HCC.


2022 ◽  
Vol 12 ◽  
Author(s):  
Malik Bisserier ◽  
Nathaniel Saffran ◽  
Agnieszka Brojakowska ◽  
Aimy Sebastian ◽  
Angela Clare Evans ◽  
...  

During spaceflight, astronauts are exposed to multiple unique environmental factors, particularly microgravity and ionizing radiation, that can cause a range of harmful health consequences. Over the past decades, increasing evidence demonstrates that the space environment can induce changes in gene expression and RNA processing. Long non-coding RNA (lncRNA) represent an emerging area of focus in molecular biology as they modulate chromatin structure and function, the transcription of neighboring genes, and affect RNA splicing, stability, and translation. They have been implicated in cancer development and associated with diverse cardiovascular conditions and associated risk factors. However, their role on astronauts’ health after spaceflight remains poorly understood. In this perspective article, we provide new insights into the potential role of exosomal lncRNA after spaceflight. We analyzed the transcriptional profile of exosomes isolated from peripheral blood plasma of three astronauts who flew on various Shuttle missions between 1998–2001 by RNA-sequencing. Computational analysis of the transcriptome of these exosomes identified 27 differentially expressed lncRNAs with a Log2 fold change, with molecular, cellular, and clinical implications.


2022 ◽  
Vol 14 ◽  
Author(s):  
Zhen Lan ◽  
Yanting Chen ◽  
Jiali Jin ◽  
Yun Xu ◽  
Xiaolei Zhu

Alzheimer's disease (AD), a heterogeneous neurodegenerative disorder, is the most common cause of dementia accounting for an estimated 60–80% of cases. The pathogenesis of AD remains unclear, and no curative treatment is available so far. Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review describes the biological functions and mechanisms of lncRNAs in AD, indicating that lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.


2022 ◽  
Vol 11 ◽  
Author(s):  
Soudeh Ghafouri-Fard ◽  
Tayyebeh Khoshbakht ◽  
Mohammad Taheri ◽  
Seyedpouzhia Shojaei

Sprouty RTK signaling antagonist 4-intronic transcript 1 (SPRY4-IT1) is a long non-coding RNA (lncRNA) encoded by a gene located on 5q31.3. This lncRNA has a possible role in the regulation of cell growth, proliferation, and apoptosis. Moreover, since SPRY4-IT1 controls levels of lipin 2, it is also involved in the biosynthesis of lipids. During the process of biogenesis, SPRY4-IT1 is produced as a primary transcript which is then cleaved to generate a mature transcript which is localized in the cytoplasm. SPRY4-IT1 has oncogenic roles in diverse tissues. A possible route of participation of SPRY4-IT1 in the carcinogenesis is through sequestering miRNAs such as miR-101-3p, miR‐6882‐3p and miR-22-3p. The sponging effect of SPRY4-IT1 on miR-101 has been verified in colorectal cancer, osteosarcoma, cervical cancer, bladder cancer, gastric cancer and cholangiocarcinoma. SPRY4-IT1 has functional interactions with HIF-1α, NF-κB/p65, AMPK, ZEB1, MAPK and PI3K/Akt signaling. We explain the role of SPRY4-IT1 in the carcinogenesis according to evidence obtained from cell lines, xenograft models and clinical studies.


2022 ◽  
Author(s):  
Xinsen Yang ◽  
Caiyue Liu ◽  
Xiaoling Niu ◽  
Liu Wang ◽  
Laiyi Li ◽  
...  

Abstract Background Drought has become the major abiotic stress that causes losses in rice yields and consequently is one of the main environmental factors threatening food security. Long non-coding RNA (lncRNA) is known to play an important role in plant response to drought stress, while the mechanisms of competing endogenous RNA (ceRNA) in drought resistance in upland rice have been rarely reported. Results In our study, a total of 191 lncRNAs, 2115 mRNAs and 32 miRNAs (microRNAs) were found by strand-specific sequencing and small RNA sequencing to be differentially expressed in drought-stressed rice. Functional analysis of results indicate that they play important roles in hormone signal transduction, chlorophyll synthesis, protein synthesis and other pathways. Construction of a ceRNA network revealed that MSTRG.28732.3 may interact with miR171 in the chlorophyll biosynthesis pathway and affect the ability of plants to withstand drought stress by regulating Os02g0662700, Os02g0663100 and Os06g0105350. The accuracy of the regulatory network was verified by qRT-PCR. Conclusion Our results provide a theoretical basis for future studies on the potential function of lncRNA in plant drought resistance, and they provide new genetic resources for drought-resistant rice breeding.


Sign in / Sign up

Export Citation Format

Share Document