Biodegradation of 4-hydroxybenzoic acid by Acinetobacter johnsonii FZ-5 and Klebsiella oxytoca FZ-8 under anaerobic conditions

2021 ◽  
Author(s):  
Peng Lu ◽  
Huiying Huang ◽  
Yixiao Sun ◽  
Mengyao Qiang ◽  
Yan Zhu ◽  
...  
1995 ◽  
Vol 41 (3) ◽  
pp. 266-272 ◽  
Author(s):  
L. Létouraeau ◽  
J.-G. Bisaillon ◽  
F. Lépine ◽  
R. Beaudet

A methanogenic consortium transforming phenol to benzoic acid was submitted to different treatments to characterize the carboxylating microorganisms and eventually to facilitate their isolation. Under aerobic conditions, phenol was not transformed by the consortium and no growth was observed on solid medium. The consortium from an inoculum that was treated with heat, or heat and ethanol, retained the ability to carboxylate phenol under strictly anaerobic conditions. Electron microscopic observations of the consortium from an inoculum that was heated for 15 min at 80 °C revealed only Gram-positive bacilli. In this culture, methane production was not detected and benzoic acid accumulated. Five colonies with distinct morphologies were isolated from this culture on solid medium. Four of these strains were identified as Clostridium spp. In contrast to the untreated culture, none of the strains isolated were able to carboxylate phenol in pure culture or in coculture, nor could they decarboxylate or dehydroxylate 4-hydroxybenzoic acid, or oxidize 2-hydroxybenzyl alcohol, or O-demethylate anisole or 2-methoxyphenol. Also, the consortium from a treated inoculum retained its ability to decarboxylate and dehydroxylate 4-hydroxybenzoic acid forming phenol and benzoic acid, respectively, but could not accomplish the other reactions. These results suggest that spore-forming microorganisms are involved in the carboxylation of phenol and in the decarboxylation and dehydroxylation of 4-hydroxybenzoic acid.Key words: spore-forming bacteria, phenol, benzoic acid, methanogenic conditions, carboxylation.


Desalination ◽  
2009 ◽  
Vol 249 (3) ◽  
pp. 1212-1216 ◽  
Author(s):  
C.Y. Chen ◽  
C.M. Kao ◽  
S.C. Chen ◽  
T.Y. Chen

1992 ◽  
Vol 25 (11) ◽  
pp. 411-418 ◽  
Author(s):  
S. Tobita ◽  
S. Iyobe

An organism isolated from a soil sample with 4-chlorobenzoic acid (4-CBA) as the sole carbon and energy source was tentatively identified as an Acinetobacter sp. This organism, strain ST-1, could completely mineralize 4-CBA in pure culture. The strain hydrolytically dehalogenated 4-CBA as the first step in the degradation pathway. The product, 4-hydroxybenzoic acid, was further metabolized via protocatechuic acid (PCA) under aerobic conditions. The conversion of 4-CBA into 4-hydroxybenzoic acid occurred with a yield greater than 80% under anaerobic conditions with continuous passage of nitrogen into the culture, so molecular oxygen was not essential for dehalogenation. Spectrophotometrical studies showed that the strain oxidized PCA to form β-carboxy-cis, cis-muconic acid as the ortho-ring fission product. Cell extracts converted PCA to β-ketoadipic acid, which was evidence that PCA was cleaved by ortho fission and further degraded in the β-ketoadipate pathway.


1969 ◽  
Vol 21 (03) ◽  
pp. 573-579 ◽  
Author(s):  
P Fantl

SummaryTreatment of human and dog oxalated plasma with 0.2 to 1.0 × 10−1 M 2.3-dithiopropanol (BAL) or dithiothreitol (DTT) at 2–4° C for 30 min results in the reduction of the vitamin-K dependent clotting factors II, VII, IX and X to the respective-SH derivatives. The reaction is pH dependent. Under aerobic conditions the delayed one stage prothrombin time can be partly reversed. Under anaerobic conditions a gradual prolongation of the one stage prothrombin time occurs without reversal.In very diluted plasma treated with the dithiols, prothrombin can be converted into thrombin if serum as source of active factors VII and X is added. In contrast SH factors VII, IX and X are inactive in the specific tests. Reoxidation to active factors II, VII, IX and X takes place during adsorption and elution of the SH derivatives. The experiments have indicated that not only factor II but also factors VII, IX and X have active-S-S-centres.


1961 ◽  
Vol 36 (4) ◽  
pp. 511-519 ◽  
Author(s):  
Margaret Wiener ◽  
Charles I. Lupa ◽  
E. Jürgen Plotz

ABSTRACT 17α-hydroxyprogesterone-4-14C-17α-caproate (HPC), a long-acting progestational agent, was incubated with homogenates of rat liver and human placenta. The rat liver was found to reduce Ring A of HPC under anaerobic conditions to form allopregnane-3β,17α-diol-20-one-17α-caproate and pregnane-3β,17α-diol-20-one-17α-caproate, the allopregnane isomer being the major product. The caproic acid ester was neither removed nor altered during the incubation. Placental tissue did not attack HPC under conditions where the 20-ketone of progesterone was reduced. It is postulated that this absence of attack on the side chain is due to steric hindrance from the caproate ester, and that this may account for the prolonged action of HPC.


2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document