plant metabolomics
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 37)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Attilio Anzano ◽  
Giuliano Bonanomi ◽  
Stefano Mazzoleni ◽  
Virginia Lanzotti

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Hongxu Zhou ◽  
Yi Zhang ◽  
Hui Liang ◽  
Huijie Song ◽  
Jiaming Zhao ◽  
...  

Abstract Background Belamcanda chinensis (L.) DC. (BC) belongs to the family of Iridaceae and is widely cultivated and used in many Chinese patent medicine and Chinese medicinal formulae. However, due to the high similarities in appearance such as color and shape to Iris tectorum Maxim (ITM), another plant from the same family, BC is often confused or even misused with ITM. Methods Therefore, in order to distinguish the chemical constituents, qualities and biological activities of BC and ITM, multiple technologies including plant metabolomics, digital reference standard (DRS) analyzer and biological activities assay were employed to provide a sufficient basis for their practical applications. Results In plant metabolomics, the PCA and OPLS-DA score plot indicated the obvious differences in chemical profiling between BC and ITM and 6 compounds were successfully identified to contribute to the differences. In DRS study, the fingerprints of 10 and 8 compounds in BC and ITM were developed based on DRS analyzer, respectively, involving relative retention time (RRT) method and linear calibration using two reference substances (LCTRS) technique. The DRS analyzer also accurately identified 10 and 8 compounds from BC and ITM, respectively, by using only two reference standards. In biological activities assay, BC had a better anticancer effect than ITM due to the high abundance of irigenin, while ITM showed stronger hepatoprotective activity than BC because of the high abundance of tectoridin. Conclusions Therefore, due to the significant differences of B. chinensis and I. dichotoma in chemical composition and biological activities, the current studies strongly proved that these two medicinal plants could not be mixed in industrial production and clinical medication.


Author(s):  
Chigateri M. Vinay ◽  
Sanjay Kannath Udayamanoharan ◽  
Navya Prabhu Basrur ◽  
Bobby Paul ◽  
Padmalatha S. Rai

AbstractPlant metabolome as the downstream product in the biological information of flow starting from genomics is highly complex, and dynamically produces a wide range of primary and secondary metabolites, including ionic inorganic compounds, hydrophilic carbohydrates, amino acids, organic compounds, and compounds associated with hydrophobic lipids. The complex metabolites present in biological samples bring challenges to analytical tools for separating and characterization of the metabolites. Analytical tools such as nuclear magnetic resonance (NMR) and mass spectrometry have recently facilitated the separation, characterization, and quantification of diverse chemical structures. The massive amount of data generated from these analytical tools need to be handled using fast and accurate bioinformatics tools and databases. In this review, we focused on plant metabolomics data acquisition using various analytical tools and freely available workflows from raw data to meaningful biological data to help biologists and chemists to move at the same pace as computational biologists.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Yan ◽  
Zong-Jin Pu ◽  
Zhen-Yu Zhang ◽  
Gui-Sheng Zhou ◽  
Dong-Qian Zou ◽  
...  

Fruit of Citrus wilsonii Tanaka called as “Xiang yuan” in Chinese, which means fragrant and round. It was widely used in the pharmaceutical and food industries. This fruit has well-known health benefits such as antioxidant, radical scavenging, and anti-inflammatory. Naringin, deacetylnomilin, citric acid, limonin, and nomilin were the characteristic components of Citrus wilsonii Tanaka. Although the fruit of Citrus wilsonii Tanaka possessed many applications, there was a lack of research on the growth period and drying process. In this study, plant metabolomics was used to analyze the biomarkers of the growth period, and appearance indicators and metabolites abundance were combined for the analysis of change regularities of the growth period. The representative differential metabolites of naringin, citric acid, and limonin were screened out, and the abundance of these components was relatively highest in the middle of the growth period. Therefore, the fruit of Citrus wilsonii Tanaka should be harvested before it turned yellow completely, which could effectively ensure the content of potential active ingredients. In the comparison of different drying methods, citric acid and naringin were considered to be representative differential components, but limonoids were relatively stable and not easily affected by drying methods. Naringin was an index component that could not only be reflected the maturity but also related to different drying methods. Considering its physical and chemical properties and its position, naringin had the potential to be a biomarker of Citrus wilsonii Tanaka.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1308
Author(s):  
Felipe Sanchez Bragagnolo ◽  
Cristiano Soleo Funari ◽  
Elena Ibáñez ◽  
Alejandro Cifuentes

The valorization of agri-food by-products is essential from both economic and sustainability perspectives. The large quantity of such materials causes problems for the environment; however, they can also generate new valuable ingredients and products which promote beneficial effects on human health. It is estimated that soybean production, the major oilseed crop worldwide, will leave about 597 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2020/21. An alternative for the use of soy-related by-products arises from the several bioactive compounds found in this plant. Metabolomics studies have already identified isoflavonoids, saponins, and organic and fatty acids, among other metabolites, in all soy organs. The present review aims to show the application of metabolomics for identifying high-added-value compounds in underused parts of the soy plant, listing the main bioactive metabolites identified up to now, as well as the factors affecting their production.


Author(s):  
Ramesh Londonkar ◽  
M. M. Kesaralikar

The term metabolomics was coined by Oliver and his group in 1998. It is a study of biochemical profile and regulation of functions in whole organism by analyzing a metabolite pool present in organism. Researchers believe that more than 400,000 plant species exist worldwide. Total number of metabolites in the plant kingdom are about 2,00,000 to 10,00,000. With the availability of highly sensitive and selective analytical techniques, metabolic changes in plant systems can be followed in a comprehensive way. This technology is useful in assessing gene function and relationships to metabolites. The nutritional values of food and concentration of pharmaceuticals in plants can be improved by using metabolomics study and its functional genomic strategies. Metabolomics analysis is comparatively fast, cheaper and reliable, but simultaneous identification of all metabolites in a crop plant remains a challenge.


Sign in / Sign up

Export Citation Format

Share Document