aerobic conditions
Recently Published Documents


TOTAL DOCUMENTS

1486
(FIVE YEARS 230)

H-INDEX

75
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Olga L. Meshcheryakova ◽  
Galina P. Shuvaeva ◽  
Tatyana V. Sviridova ◽  
Anna A. Tolkacheva ◽  
Olga S. Korneeva

The researchers of this study investigated the biosynthesis of squalene by the yeast S. cerevisiae VGSH-2 through the activity of squalene epoxidase, which is a key enzyme in the conversion of squalene to ergosterol. It has been established that under aerobic conditions the antimycotic drug terbinafine promotes the switching of ergosterol formation to squalene synthesis. This switch occurs through specific inhibition of the squalene epoxidase of the yeast S. cerevisiae VGSH-2, thus increasing the biosynthetic ability of the yeast towards squalene. According to the results of this study, the optimal concentration of terbinofine in the nutrient medium was 0.3 μmol / cm3 . This concentration led to a 5-fold decrease in squalene epoxidase activity and a 7-8 times increase in squalene synthesis. The results obtained can be used to develop a competitive technology for the industrial production of squalene by microbial synthesis. Keywords: squalene, yeast, biosynthesis, inhibition of activity, terbinafine, squalene epoxidase, Saccharomices cerevisiae VGSH-2


Chemosphere ◽  
2022 ◽  
Vol 286 ◽  
pp. 131836
Author(s):  
Yuan Chen ◽  
Yuancai Chen ◽  
Jianbo Jia ◽  
Bing Yan
Keyword(s):  

2022 ◽  
Author(s):  
Chandra Volla ◽  
Arnab Dey ◽  
Anurag Singh

An efficient oxidative [3+2] annulation reaction of aryl hydrazones and heterobicyclic alkenes has been realized with inexpensive and earth-abundant cobalt-salts under aerobic conditions. The reaction proceeds via directing-group assisted C-H...


Author(s):  
Duc Minh Pham ◽  
Hang Nguyen Thi ◽  
Ly Nguyen Thi ◽  
Minh Huyen Nguyen Thi ◽  
◽  
...  

Phellinus linteus strain GC was cultured for harvesting biomass by submerged fermentation method in 100 L fermenter which produced in Vietnam. The process of cultivation of this fungus was performed in aerobic conditions with aeration at 1 vvm, stirred at 150 rpm, temperature from 27oC to 29oC. The observation of cultivation was performed to evaluate the optimum time of growth which produce highest biomass of the mycelium for application purpose of using as functional food. The pH of medium was slightly changed with decrease then increase again, and reached about 6.0 when cultivation process ends. The biomass of mycelium was gradually increased until about 11 days of cultivation with about 30 g/L of dried biomass and the content of of sugar reduced in medium decreased from 40 g/L to 6 g/L.


2021 ◽  
Vol 1 (3) ◽  
pp. 615-625
Author(s):  
Trent Peacock ◽  
Hosni M. Hassan

Lactobacilli are Gram-positive aerotolerant organisms that comprise the largest genus of Lactic Acid Bacteria (LAB). Most lactobacilli are devoid of the antioxidant enzymes, superoxide dismutases, and catalases, required for protection against superoxide radicals and hydrogen peroxide (H2O2), respectively. However, some lactobacilli can accumulate millimolar concentrations of intracellular manganese and spare the need for superoxide dismutase, while others possess non-heme catalases. L. plantarum is associated with plant materials and plays an important role in fermented foods and gut microbiomes. Therefore, understanding the effects of the environment on the growth and survival of this organism is essential for its success in relevant industrial applications. In this report, we investigated the physiological role of Mn-catalase (MnKat) in Lactobacillus plantarum ATCC 14431. To this end, we compared the physiological and morphological properties of a ΔMnkat mutant strain and its isogenic parental strain L. plantarum ATCC 14431. Our data showed that the MnKat is critical for the growth of L. plantarum ATCC 14431 in the presence of oxygen and resistance to H2O2. The aerobic growth of the mutant in presence or absence of H2O2 was improved in the Mn-rich medium (APT) as compared to the growth in MRS medium. Furthermore, under aerobic conditions the mutant strain possessed atypical cellular morphology (i.e., shorter, and fatter). In conclusion, the MnKat of L. plantarum ATCC 14431 is important for aerobic growth, protection against H2O2, and maintenance of the rod-shaped cell morphology under aerobic conditions.


Author(s):  
Jun Xu ◽  
Heng Cai ◽  
Jiabin Shen ◽  
Chao Shen ◽  
Jie Wu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Hideo Kawaguchi ◽  
Tomohisa Hasunuma ◽  
Yasuo Ohnishi ◽  
Takashi Sazuka ◽  
Akihiko Kondo ◽  
...  

Abstract Background Bio-based aromatic compounds are of great interest to the industry, as commercial production of aromatic compounds depends exclusively on the unsustainable use of fossil resources or extraction from plant resources. γ-amino acid 3-amino-4-hydroxybenzoic acid (3,4-AHBA) serves as a precursor for thermostable bioplastics. Results Under aerobic conditions, a recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI genes derived from Streptomyces griseus produced 3,4-AHBA with large amounts of amino acids as by-products. The specific productivity of 3,4-AHBA increased with decreasing levels of dissolved oxygen (DO) and was eightfold higher under oxygen limitation (DO = 0 ppm) than under aerobic conditions (DO ≥ 2.6 ppm). Metabolic profiles during 3,4-AHBA production were compared at three different DO levels (0, 2.6, and 5.3 ppm) using the DO-stat method. Results of the metabolome analysis revealed metabolic shifts in both the central metabolic pathway and amino acid metabolism at a DO of < 33% saturated oxygen. Based on this metabolome analysis, metabolic pathways were rationally designed for oxygen limitation. An ldh deletion mutant, with the loss of lactate dehydrogenase, exhibited 3.7-fold higher specific productivity of 3,4-AHBA at DO = 0 ppm as compared to the parent strain KT01 and produced 5.6 g/L 3,4-AHBA in a glucose fed-batch culture. Conclusions Our results revealed changes in the metabolic state in response to DO concentration and provided insights into oxygen supply during fermentation and the rational design of metabolic pathways for improved production of related amino acids and their derivatives. Graphical Abstract


2021 ◽  
Author(s):  
Yaqin Sun ◽  
Lingyun Liang ◽  
Yafeng Zheng ◽  
Jindong Han ◽  
Zhilong Xiu

Abstract Background: Natural microbial consortia could efficiently produce 1,3-propanediol, the most promising bulk biochemical derived from glycerol that can be used as a monomer in the synthesis of polytrimethylene terephthalate (PTT). While natural microbial communities are made up of a diverse range of microbes with frequently unknown functions, the construction of synthetic microbial consortia allows for creating more defined systems with lower complexity.Results: In this study, the synthetic microbial consortia were constructed by combing facultative microbes of Klebsiella pneumoniae DUT2 (KP) and/or Escherichia coli DUT3 (EC) cultures with the strict anaerobic microbe of Clostridium butyricum DUT1 (CB) cultures under micro-aerobic conditions. The function of EC and KP during the fermentation process was to deplete oxygen and provide an anaerobic environment for CB. Furthermore, KP competes with CB to consume crude glycerol and produce 1,3-PDO. The interaction of commensalism and competition resulted in synthetic microbial consortia that could efficiently convert crude glycerol to 1,3-PDO even under micro-aerobic conditions. In a batch fermentation, the synthetic CB:KP co-culture at an initial abundance ratio of 92.5:7.5 yielded a maximum 1,3-PDO concentration of 52.08 g/L, with a yield of 0.49 g/g and a productivity of 1.80 g/(L.h), which increased by 10%, 9%, and 12%, respectively, when compared to the CB mono-culture under strictly anaerobic conditions. Compared to the KP mono-culture, the final 1,3-PDO concentration, yield, and productivity by the synthetic CB:KP consortia increased by 16%, 19%, and 84%, respectively. The synthetic CB:KP:EC co-culture achieved the highest 1,3-PDO flux of 49.17% at an initial abundance ratio of 85:7.5:7.5, while 7.43%, 5.77%, 3.15% 4.24%, and 2.13% of flux was distributed to butyric acid, acetic acid, lactic acid, ethanol, and succinic acid pathways. In a fed-batch fermentation, synthetic CB:KP:EC co-culture demonstrated a maximum 1,3-PDO concentration of 77.68 g/L with a yield of 0.51 g/g which is 30% and 13% higher than the production by the CB mono-culture at 0.02 vvm N2 supply. The initial abundance of CB guaranteed to be at least 85% facilitates 1,3-PDO production from crude glycerol efficiently by the development of synthetic microbial consortia. Conclusion: Under micro-aerobic conditions, the synthetic microbial consortia demonstrated excellent performance on 1,3-propanediol production via the interaction of commensalism and competition. The experimental results demonstrated the potential benefit of using the synthetic microbial consortia to produce 1,3-propanediol from crude glycerol.


Sign in / Sign up

Export Citation Format

Share Document