hydroxybenzyl alcohol
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 19)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 7 (12) ◽  
pp. 1091
Author(s):  
Micael F. M. Gonçalves ◽  
Sandra Hilário ◽  
Marta Tacão ◽  
Yves Van de Van de Peer ◽  
Artur Alves ◽  
...  

Aspergillus section Circumdati encompasses several species that express both beneficial (e.g., biochemical transformation of steroids and alkaloids, enzymes and metabolites) and harmful compounds (e.g., production of ochratoxin A (OTA)). Given their relevance, it is important to analyze the genetic and metabolic diversity of the species of this section. We sequenced the genome of Aspergillus affinis CMG 70, isolated from sea water, and compared it with the genomes of species from section Circumdati, including A. affinis’s strain type. The A. affinis genome was characterized considering secondary metabolites biosynthetic gene clusters (BGCs), carbohydrate-active enzymes (CAZymes), and transporters. To uncover the biosynthetic potential of A. affinis CMG 70, an untargeted metabolomics (LC-MS/MS) approach was used. Cultivating the fungus in the presence and absence of sea salt showed that A. affinis CMG 70 metabolite profiles are salt dependent. Analyses of the methanolic crude extract revealed the presence of both unknown and well-known Aspergillus compounds, such as ochratoxin A, anti-viral (e.g., 3,5-Di-tert-butyl-4-hydroxybenzoic acid and epigallocatechin), anti-bacterial (e.g., 3-Hydroxybenzyl alcohol, L-pyroglutamic acid, lecanoric acid), antifungal (e.g., L-pyroglutamic acid, 9,12,13-Trihydroxyoctadec-10-enoic acid, hydroxyferulic acid), and chemotherapeutic (e.g., daunomycinone, mitoxantrone) related metabolites. Comparative analysis of 17 genomes from 16 Aspergillus species revealed abundant CAZymes (568 per species), secondary metabolite BGCs (73 per species), and transporters (1359 per species). Some BGCs are highly conserved in this section (e.g., pyranonigrin E and UNII-YC2Q1O94PT (ACR toxin I)), while others are incomplete or completely lost among species (e.g., bikaverin and chaetoglobosins were found exclusively in series Sclerotiorum, while asperlactone seemed completely lost). The results of this study, including genome analysis and metabolome characterization, emphasize the molecular diversity of A. affinis CMG 70, as well as of other species in the section Circumdati.


2021 ◽  
Vol 16 (9) ◽  
pp. 1934578X2110350
Author(s):  
Lijun Cheng ◽  
Yang Deng

Gastrodin (GAS) and its aglycone, p-hydroxybenzyl alcohol (HBA), are both bioactive compounds extracted from Gastrodia elata Blume (GEB). In the current Chinese pharmacopoeia, they are regarded as quality control markers for GEB. In this study, we developed a high-performance liquid chromatography method coupled with a diode array detector to quantify GAS and HBA concentrations in plasma following oral ingestion by rats. For the first time, GAS was detected in vivo after HBA administration. GAS and HBA both had similar pharmacological effects, but the influence of the glucose moiety resulted in different pharmacokinetic characteristics. In this study, the effects of GAS and HBA at different administration durations were investigated in zebrafish larvae. These compounds were found to induce a sedative effect but had different onset times. In conclusion, a biotransformation of HBA to GAS could be observed in the rats. This may be a new insight into the pharmacokinetic characteristics of these bioactive compounds and also relates to the different ways in which they take effect.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4443
Author(s):  
Jiangyan Huo ◽  
Min Lei ◽  
Feifei Li ◽  
Jinjun Hou ◽  
Zijia Zhang ◽  
...  

A novel homogeneous polysaccharide named GEP-1 was isolated and purified from Gastrodia elata (G. elata) by hot-water extraction, ethanol precipitation, and membrane separator. GEP-1, which has a molecular weight of 20.1 kDa, contains a polysaccharide framework comprised of only glucose. Methylation and NMR analysis showed that GEP-1 contained 1,3,6-linked-α-Glcp, 1,4-linked-α-Glcp, 1,4-linked-β-Glcp and 1,4,6-linked-α-Glcp. Interestingly, GEP-1 contained citric acid and repeating p-hydroxybenzyl alcohol as one branch. Furthermore, a bioactivity test showed that GEP-1 could significantly promote the growth of Akkermansia muciniphila (A. muciniphila) and Lacticaseibacillus paracasei (L.paracasei) strains. These results implied that GEP-1 might be useful for human by modulating gut microbiota.


2021 ◽  
Vol 22 (11) ◽  
pp. 5607
Author(s):  
Berwin Singh Swami Vetha ◽  
Angela Guma Adam ◽  
Azeez Aileru

Polyoxalate (POx) and copolyoxalate (CPOx) smart polymers are topics of interest the field of inflammation. This is due to their drug delivery ability and their potential to target reactive oxygen species (ROS) and to accommodate small molecules such as curcumin, vanilline, and p-Hydroxybenzyl alcohol. Their biocompatibility, ultra-size tunable characteristics and bioimaging features are remarkable. In this review we discuss the genesis and concept of oxylate smart polymer-based particles and a few innovative systemic delivery methods that is designed to counteract the inflammation and other aging-associated diseases (AADs). First, we introduce the ROS and its role in human physiology. Second, we discuss the polymers and methods of incorporating small molecule in oxalate backbone and its drug delivery application. Finally, we revealed some novel proof of concepts which were proven effective in disease models and discussed the challenges of oxylate polymers.


2021 ◽  
Author(s):  
Vaibhav B. Patil ◽  
Jagadeesh Babu Nanubolu ◽  
Rambabu Chegondi

One-pot sequential p-hydroxybenzylation/oxidative dearomatization/spiroannulation has been designed for the efficient construction of tetrahydrofuran containing spiro-cyclohexadienones. This reaction proceeds through the p-hydroxybenzylation of 1,3-diketones with p-hydroxybenzyl alcohol via quinone methide formation...


2020 ◽  
Vol 48 (4) ◽  
pp. 506-514
Author(s):  
Bu-Yeon Kim ◽  
Hye-Bin Jung ◽  
Ji-Yeong Lee ◽  
Lenny Ferrer ◽  
Henry Syukur Purwanto ◽  
...  

Author(s):  
Lam Anh Le Viet ◽  
Thi Xuan Thi Luu ◽  
Tien Khoa Khoa Le

In order to synthesize p-hydroxybenzaldehyde from p-hydroxybenzyl alcohol under oxygen atmosphere, we prepared the new heterogeneous catalysts based on manganese oxides by in-situ growth method at different pH values. The crystal structure, phase composition, morphology, and surface groups of catalysts were characterized by powder X-ray diffraction, field emission electron scanning microscopy and Fourier transform infrared spectroscopy. According to the experimental results, the solution pH used for the preparation of the catalysts strongly affected their properties and their catalytic activities. When the pH was increased from 2 to 4, the a-Mn2O3 content increased with the dominant presence of the rod-like particles. The quantity of Mn on the surface also enhanced which might improve the conversion of p-hydroxybenzyl alcohol while maintaining the high selectivity to p-hydroxybenzaldehyde (about 70%). However, when the pH was highr than 4, the quantity of rod-like particles,a-Mn2O3 and surface Mn species decreased which lowered the catalytic activity.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Hua Yin ◽  
Tiandong Hu ◽  
Yibin Zhuang ◽  
Tao Liu

Abstract Background The natural phenolic glycoside gastrodin is the major bioactive ingredient in the well-known Chinese herb Tianma and is widely used as a neuroprotective medicine in the clinic. Microbial production from sustainable resources is a promising method to replace plant extraction and chemical synthesis which were currently used in industrial gastrodin production. Saccharomyces cerevisiae is considered as an attractive host to produce natural plant products used in the food and pharmaceutical fields. In this work, we intended to explore the potential of S. cerevisiae as the host for high-level production of gastrodin from glucose. Results Here, we first identified the plant-derived glucosyltransferase AsUGT to convert 4-hydroxybenzyl alcohol to gastrodin with high catalytic efficiency in yeast. Then, we engineered de novo production of gastrodin by overexpressing codon-optimized AsUGTsyn, the carboxylic acid reductase gene CARsyn from Nocardia species, the phosphopantetheinyl transferase gene PPTcg-1syn from Corynebacterium glutamicum, the chorismate pyruvate-lyase gene UbiCsyn from Escherichia coli, and the mutant ARO4K229L. Finally, we achieved an improved product titer by a chromosomal multiple-copy integration strategy and enhancement of metabolic flux toward the aglycon 4-hydroxybenzyl alcohol. The best optimized strain produced 2.1 g/L gastrodin in mineral medium with glucose as the sole carbon source by flask fermentation, which was 175 times higher than that of the original gastrodin-producing strain. Conclusions The de novo high-level production of gastrodin was first achieved. Instead of chemical synthesis or plants extraction, our work provides an alternative strategy for the industrial production of gastrodin by microbial fermentation from a sustainable resource.


2020 ◽  
Author(s):  
Hua Yin ◽  
Tian Dong Hu ◽  
Yi Bin Zhuang ◽  
Tao Liu

Abstract Background: The natural phenolic glycoside gastrodin is the major bioactive ingredient in the well-known Chinese herb Tianma and is widely used as a neuroprotective medicine in the clinic. Microbial production from sustainable resources is a promising method to replace plant extraction and chemical synthesis which were currently used in industrial gastrodin production. Saccharomyces cerevisiae is considered as an attractive host to produce natural plant products used in the food and pharmaceutical fields. In this work, we intended to explore the potential of S. cerevisiae as the host for high-level production of gastrodin from glucose.Results: Here, we first identified the plant-derived glucosyltransferase AsUGT to convert 4-hydroxybenzyl alcohol to gastrodin with high catalytic efficiency in yeast. Then, we engineered de novo production of gastrodin by overexpressing codon-optimized AsUGTsyn, the carboxylic acid reductase gene CARsyn from Nocardia species, the phosphopantetheinyl transferase gene PPTcg-1syn from Corynebacterium glutamicum, the chorismate pyruvate-lyase gene UbiCsyn from Escherichia coli, and the mutant ARO4K229L. Finally, we achieved an improved product titer by a chromosomal multiple-copy integration strategy and enhancement of metabolic flux toward the aglycon 4-hydroxybenzyl alcohol. The best optimized strain produced 2.1 g/L gastrodin in mineral medium with glucose as the sole carbon source by flask fermentation, which was 175 times higher than that of the original gastrodin-producing strain.Conclusions: The de novo high-level production of gastrodin was first achieved. Instead of chemical synthesis or plants extraction, our work provides an alternative strategy for the industrial production of gastrodin by microbial fermentation from a sustainable resource.


Sign in / Sign up

Export Citation Format

Share Document