Plant silicon isotopic signature might reflect soil weathering degree

2008 ◽  
Vol 91 (2-3) ◽  
pp. 163-175 ◽  
Author(s):  
S. Opfergelt ◽  
B. Delvaux ◽  
L. André ◽  
D. Cardinal
2009 ◽  
Vol 73 (24) ◽  
pp. 7226-7240 ◽  
Author(s):  
S. Opfergelt ◽  
G. de Bournonville ◽  
D. Cardinal ◽  
L. André ◽  
S. Delstanche ◽  
...  

2009 ◽  
Vol 59 (6) ◽  
pp. 1319-1326 ◽  
Author(s):  
Younghwan Son ◽  
Myounghak Oh ◽  
Seunghak Lee

1981 ◽  
Vol 34 (4) ◽  
pp. 243-245 ◽  
Author(s):  
Norbert Clauer ◽  
Jon Olafsson
Keyword(s):  

Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Shuang-Shuang Chen ◽  
Tong Hou ◽  
Jia-Qi Liu ◽  
Zhao-Chong Zhang

Shikoku Basin is unique as being located within a trench-ridge-trench triple junction. Here, we report mineral compositions, major, trace-element, and Sr-Nd-Pb isotopic compositions of bulk-rocks from Sites C0012 (>18.9 Ma) and 1173 (13–15 Ma) of the Shikoku Basin. Samples from Sites C0012 and 1173 are tholeiitic in composition and display relative depletion in light rare earth elements (REEs) and enrichment in heavy REEs, generally similar to normal mid-ocean ridge basalts (N-MORB). Specifically, Site C0012 samples display more pronounced positive anomalies in Rb, Ba, K, Pb and Sr, and negative anomalies in Th, U, Nb, and Ta, as well as negative Nb relative to La and Th. Site 1173 basalts have relatively uniform Sr-Nd-Pb isotopic compositions, close to the end member of depleted mantle, while Site C0012 samples show slightly enriched Sr-Nd-Pb isotopic signature, indicating a possible involvement of enriched mantle 1 (EM1) and EM2 sources, which could be attributed to the metasomatism of the fluids released from the dehydrated subduction slab, but with the little involvement of subducted slab-derived sedimentary component. Additionally, the Shikoku Basin record the formation of the back-arc basin was a mantle conversion process from an island arc to a typical MORB. The formation of the Shikoku Basin is different from that of the adjacent Japan Sea and Parece Vela Basin, mainly in terms of the metasomatized subduction-related components, the nature of mantle source, and partial melting processes.


2021 ◽  
pp. 1-17
Author(s):  
Kazem Zamanian ◽  
Alex R. Lechler ◽  
Andrew J. Schauer ◽  
Yakov Kuzyakov ◽  
Katharine W. Huntington

Abstract Paleoenvironmental reconstructions are commonly based on isotopic signatures of a variety of carbonate types, including rhizoliths and land-snail shells, present in paleosol-loess sequences. However, various carbonate types are formed through distinct biotic and abiotic processes over various periods, and therefore may record diverging environmental information in the same sedimentological layer. Here, we investigate the effects of carbonate type on δ13C, δ18O, and clumped isotope-derived paleotemperature [T(Δ47)] from the Quaternary Nussloch paleosol-loess sequence (Rhine Valley, SW Germany). δ13C, δ18O, and T(Δ47) values of co-occurring rhizoliths (-8.2‰ to -5.8‰, -6.1‰ to -5.9‰, 12–32°C, respectively), loess dolls (-7.0‰, -5.6‰, 23°C), land-snail shells (-8.1‰ to -3.2‰, -4.0‰ to -2.2‰, 12–38°C), earthworm biospheroliths (-11‰, -4.7‰, 8°C), and “bulk” carbonates (-1.9‰ to -0.5‰, -5.6‰ to -5.3‰, 78–120°C) from three sediment layers depend systematically on the carbonate type, admixture from geogenic carbonate, and the duration of formation periods. Based on these findings, we provide a comprehensive summary for the application of the three isotopic proxies of δ13C, δ18O, and Δ47 in biogenic and pedogenic carbonates present in the same sediment layer to reconstruct paleoenvironments (e.g., local vegetation, evaporative conditions, and temperature). We conclude that bulk carbonates in Nussloch loess should be excluded from paleoenvironmental reconstructions. Instead, pedogenic and biogenic carbonates should be used to provide context for interpreting the isotopic signature for detailed site- and time-specific paleoenvironmental information.


Geoderma ◽  
2021 ◽  
Vol 402 ◽  
pp. 115154
Author(s):  
Clécia Cristina Barbosa Guimarães ◽  
José A. M. Demattê ◽  
Antônio Carlos de Azevedo ◽  
Ricardo Simão Diniz Dalmolin ◽  
Alexandre ten Caten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document