scholarly journals Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro

2010 ◽  
Vol 26 (8) ◽  
pp. 843-850 ◽  
Author(s):  
T. P. M. Goderie ◽  
G. van Soest ◽  
H. M. Garcia-Garcia ◽  
N. Gonzalo ◽  
S. Koljenović ◽  
...  
2018 ◽  
Vol 46 (11) ◽  
pp. 1745-1755 ◽  
Author(s):  
T. Horeman ◽  
E. C. Buiter ◽  
B. Pouran ◽  
M. Stijntjes ◽  
J. Dankelman ◽  
...  

2010 ◽  
Vol 53 (1) ◽  
pp. 37-44 ◽  
Author(s):  
G. Yu. Golubyatnikov ◽  
M. A. Shakhova ◽  
L. B. Snopova ◽  
A. B. Terent’yeva ◽  
N. Yu. Ignat’yeva ◽  
...  

1999 ◽  
Vol 29 (2) ◽  
pp. 85-89 ◽  
Author(s):  
L L Otis ◽  
B W Colston ◽  
M J Everett ◽  
H Nathel

2016 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Sudheer Koganti ◽  
◽  
◽  
◽  
Tushar Kotecha ◽  
...  

Intracoronary imaging has the capability of accurately measuring vessel and stenosis dimensions, assessing vessel integrity, characterising lesion morphology and guiding optimal percutaneous coronary intervention (PCI). Coronary angiography used to detect and assess coronary stenosis severity has limitations. The 2D nature of fluoroscopic imaging provides lumen profile only and the assessment of coronary stenosis by visual estimation is subjective and prone to error. Performing PCI based on coronary angiography alone is inadequate for determining key metrics of the vessel such as dimension, extent of disease, and plaque distribution and composition. The advent of intracoronary imaging has offset the limitations of angiography and has shifted the paradigm to allow a detailed, objective appreciation of disease extent and morphology, vessel diameter, stent size and deployment and healing after PCI. It has become an essential tool in complex PCI, including rotational atherectomy, in follow-up of novel drug-eluting stent platforms and understanding the pathophysiology of stent failure after PCI (e.g. following stent thrombosis or in-stent restenosis). In this review we look at the two currently available and commonly used intracoronary imaging tools – intravascular ultrasound and optical coherence tomography – and the merits of each.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


Sign in / Sign up

Export Citation Format

Share Document