Mathematical Modeling of Fluid Flow in a Positive Displacement Two-Stage Hybrid Power Reciprocating Machine with a Profiled Second Compression Stage

2021 ◽  
Vol 56 (9-10) ◽  
pp. 809-821
Author(s):  
V. E. Shcherba ◽  
A. V. Zanin ◽  
E. Yu. Nosov
2021 ◽  
pp. 6-13
Author(s):  

A principal scheme is considered and a mathematical model of work processes is developed in a two-stage hybrid power machine of positive displacement without a gas cap with a profiled working chamber of the second stage. The mathematical model is based on the basic laws of conservation of energy, volume and mass for a dropping liquid and a compressible gas in the second stage. The diameter of the supply pipeline and the initial radius of the profiled working chamber in the second stage are selected as the main geometric parameters that have the greatest influence on the work processes. The response functions are found that determine the dynamics of the fluid flow in the machine under study and its main integral characteristics. Keywords: work process, cooling, reciprocating compressor, hybrid power machine of positive displacement, profiled working chamber [email protected]


Author(s):  
S. Shahsavari ◽  
M. B. Shafii ◽  
M. H. Saidi

Thermopneumatic micropump is one type of positive displacement micropump, which has many applications due to its relatively large stroke volume, low working voltage, and simple fabrication in microscale. In this paper, a numerical study of heat transfer and fluid flow in a valveless thermopneumatically driven micropump is presented. For rectifying the bidirectional flow, a nozzle and a diffuser are used as the inlet and outlet channels of the chamber. Since the fluid flow is induced by the motion of a diaphragm, the numerical simulation includes fluid structure interaction, which requires applying a dynamic mesh. The domain of solution is divided into two sections; the actuator unit, which contains the secondary fluid, and the main chamber through which the working fluid is passing. The temperature distribution, the pressure variations, and the center deflection of the diaphragm are obtained. In order to validate the model, the numerical results are compared with some experimental data, which shows fair consistency. According to the results of the three dimensional simulation, the rectification efficiency for the nozzle and diffuser channels depends on the frequency.


Sign in / Sign up

Export Citation Format

Share Document