Effect of CO Conversion on the Product Distribution of a Co/Al2O3 Fischer–Tropsch Synthesis Catalyst Using a Fixed Bed Reactor

2012 ◽  
Vol 142 (11) ◽  
pp. 1382-1387 ◽  
Author(s):  
Dragomir B. Bukur ◽  
Zhendong Pan ◽  
Wenping Ma ◽  
Gary Jacobs ◽  
Burtron H. Davis
2019 ◽  
Vol 268 ◽  
pp. 07001
Author(s):  
Zaky Al Fatony ◽  
Yosi Febriani ◽  
IGBN Makertihartha ◽  
Melia Laniwati Gunawan ◽  
Subagjo

Fischer-Tropsch synthesis (FTS) with cobalt-based catalyst has been developed to produce wax as a feedstock for further catalytic cracking. During catalyst preparation, NH4OH was added to the salt nitrate precursor to investigate the influence on catalyst acidity. Catalysts were prepared by the dry impregnation method and characterized by XRD, BET and NH3-TPD analyses. These properties were correlated with activity and selectivity of the catalyst. Activity tests showed CO and H2 conversion were in the range of 36.4% to 80.3% and 34.2% to 74.1% respectively. The cobalt particle size measurements exhibited 7.6-8.5 nm. The presence of weak acid sites on catalyst with large surface area and pore size is mainly responsible for obtaining high yields of C5+ hydrocarbon due to suppression of cracking properties. The product distribution showed a higher selectivity to C5+ in the range of 53.57% to 96.5%. In this study, FTS was evaluated by using fixed-bed reactor at 20 bar, 250 C, and WHSV of 1500 ml/g.cat/h-1.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 572 ◽  
Author(s):  
Omid Akbarzadeh ◽  
Noor Mohd Zabidi ◽  
Yasmin Abdul Wahab ◽  
Nor Hamizi ◽  
Zaira Chowdhury ◽  
...  

Pre-treating the multi-walled carbon nanotubes (CNTs) support by refluxing in 35 vol% nitric acid followed by heating at the temperature of 600 to 900 °C resulted in the formation of defects on the CNTs. Increasing the temperature of the pre-treatment of the CNTs from 600 °C to 900 °C, enhanced the fraction of cobalt-oxide nanoparticles encapsulated in the channels of CNTs from 31% to 70%. The performance of Co/CNTs in Fischer-Tropsch synthesis (FTS) was evaluated in a fixed-bed micro-reactor at a temperature of 240 °C and a pressure of 2.0 MPa. The highest CO conversion obtained over Co/CNTs.A.900 was 59% and it dropped by ~3% after 130 h of time-on-stream. However, maximum CO conversion using Co/CNTs.A.600 catalysts was 28% and it decreased rapidly by about 54% after 130 h of time-on-stream. These findings show that the combined acid and thermal pre-treatment of CNTs support at 900 °C has improved the stability and activity of the Co/CNTs catalyst in FTS.


2020 ◽  
Vol 343 ◽  
pp. 156-164
Author(s):  
Nikola Nikačević ◽  
Branislav Todić ◽  
Miloš Mandić ◽  
Menka Petkovska ◽  
Dragomir B. Bukur

2012 ◽  
Vol 51 (37) ◽  
pp. 11955-11964 ◽  
Author(s):  
Majid Sadeqzadeh ◽  
Jingping Hong ◽  
Pascal Fongarland ◽  
Daniel Curulla-Ferré ◽  
Francis Luck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document