scholarly journals The Histopathology of Severe Graded Compression in Lower Thoracic Spinal Cord Segment of Rat, Evaluated at Late Post-injury Phase

Author(s):  
Fedorova Jana ◽  
Kellerova Erika ◽  
Bimbova Katarina ◽  
Pavel Jaroslav

AbstractSpontaneous recovery of lost motor functions is relative fast in rodent models after inducing a very mild/moderate spinal cord injury (SCI), and this may complicate a reliable evaluation of the effectiveness of potential therapy. Therefore, a severe graded (30 g, 40 g and 50 g) weight-compression SCI at the Th9 spinal segment, involving an acute mechanical impact followed by 15 min of persistent compression, was studied in adult female Wistar rats. Functional parameters, such as spontaneous recovery of motor hind limb and bladder emptying function, and the presence of hematuria were evaluated within 28 days of the post-traumatic period. The disruption of the blood-spinal cord barrier, measured by extravasated Evans Blue dye, was examined 24 h after the SCI, when maximum permeability occurs. At the end of the survival period, the degradation of gray and white matter associated with the formation of cystic cavities, and quantitative changes of glial structural proteins, such as GFAP, and integral components of axonal architecture, such as neurofilaments and myelin basic protein, were evaluated in the lesioned area of the spinal cord. Based on these functional and histological parameters, and taking the animal’s welfare into account, the 40 g weight can be considered as an upper limit for severe traumatic injury in this compression model.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2865 ◽  
Author(s):  
Lu-sheng Li ◽  
Hao Yu ◽  
Raynald Raynald ◽  
Xiao-dong Wang ◽  
Guang-hui Dai ◽  
...  

BackgroundThe nerve fibre circuits around a lesion play a major role in the spontaneous recovery process after spinal cord hemisection in rats. The aim of the present study was to answer the following question: in the re-control process, do all spinal cord nerves below the lesion site participate, or do the spinal cord nerves of only one vertebral segment have a role in repair?MethodsFirst we made a T7 spinal cord hemisection in 50 rats. Eight weeks later, they were divided into three groups based on distinct second operations at T7: ipsilateral hemisection operation, contralateral hemisection, or transection. We then tested recovery of hindlimbs for another eight weeks. The first step was to confirm the lesion had role or not in the spontaneous recovery process. Secondly, we performed T7 spinal cord hemisections in 125 rats. Eight weeks later, we performed a second single hemisection on the ipsilateral side at T8–T12 and then tested hindlimb recovery for another six weeks.ResultsIn the first part, the Basso, Beattie, Bresnahan (BBB) scores and the electrophysiology tests of both hindlimbs weren’t significantly different after the second hemisection of the ipsilateral side. In the second part, the closer the second hemisection was to T12, the more substantial the resulting impairment in BBB score tests and prolonged latency periods.ConclusionsThe nerve regeneration from the lesion area after hemisection has no effect on spontaneous recovery of the spinal cord. Repair is carried out by all vertebrae caudal and ipsilateral to the lesion, with T12 being most important.


2018 ◽  
Author(s):  
Faith H. Brennan ◽  
Jodie C.E. Hall ◽  
Zhen Guan ◽  
Phillip G. Popovich

AbstractTraumatic spinal cord injury (SCI) elicits a robust intraspinal inflammatory reaction that is dominated by at least two major subpopulations of macrophages, i.e., those derived from resident microglia and another from monocytes that infiltrate the injury site from the circulation. Previously, we implicated monocyte-derived macrophages (MDMs) as effectors of acute post-injury pathology after SCI; however, it is still unclear whether microglia also contribute to lesion pathology. Assigning distinct functional roles to microglia and MDMs in vivo has been difficult because these CNS macrophage subsets are morphologically and phenotypically similar. Here, to characterize the role that microglia play in experimental models of thoracic spinal contusion or lumbar crush injury, mice were fed vehicle chow or chow laced with a CSF1R receptor antagonist, PLX5622. Feeding PLX5622 depletes microglia. In both groups, spontaneous recovery of hindlimb motor function was evaluated for up to 8 weeks post-SCI using open-field and horizontal ladder tests. Histopathological assessment of intraspinal pathology was assessed in 8 week post-injury tissues. In both SCI models, microglia depletion exacerbated lesion pathology and impaired spontaneous recovery of hind limb function. Notably, the loss of microglia prevented astroglial encapsulation of the lesion core, which was associated with larger lesions, enhanced demyelination and neuron loss and a larger inflammatory response that was dominated by monocyte-derived macrophages. The neuroprotective and healing properties of microglia become obvious in the subacute phases of recovery; microglia depletion up to 7 days post-injury (dpi) had no apparent effect on recovery while delayed depletion from 8-28dpi exacerbated lesion pathology and significantly impaired functional recovery. These data suggest that microglia have essential tissue repair functions after SCI. Selective enhancement of microglial activities may be a novel strategy to preserve tissue and promote recovery of function after neurotrauma.


1992 ◽  
Vol 3 (3) ◽  
pp. 129-133
Author(s):  
Teresa Kirkland ◽  
Geoffrey D Taylor

A prospective study was organized to assess whether feeding back infection rates to staff performing intermittent catheterization in spinal cord-injured patients would produce a fall in urinary tract infection rates. Over a 12 month period, infection rates for such procedures were reported to unit staff: reporting was combined with educational programs emphasizing aseptic catheterization techniques and the importance ofhandwashing. Overall infection rates for the 12 month period were 13.3 per 1000 days of intermittent catheterization - unchanged from the preceding six months (15.1 per 1000 days) by retrospective chart review. Likewise, there was no statistically significant downward trend during the prospective phase of the study. A wide variety of infecting organisms were found, of whichKlebsiellaspecies (39%),Escherichia coli(18%) andEnterobacterspecies (17%) were most common: most infections were asymptomatic. Patients with complete cord lesions at or above the sixth thoracic spinal cord segment (T6) had a much higher incidence of infection (73%) than those with incomplete lesions below T6 (33%).


Neurosurgery ◽  
2017 ◽  
Vol 83 (3) ◽  
pp. 445-451 ◽  
Author(s):  
Ellen M Dukes ◽  
Steven Kirshblum ◽  
Alex A Aimetti ◽  
Sarah S Qin ◽  
Rebecca K Bornheimer ◽  
...  

Abstract BACKGROUND The lifetime economic burden of thoracic spinal cord injury (SCI) is known to be high, but evidence of variability of costs in relation to the American Spinal Injury Association Impairment Scale (AIS) grade is limited. OBJECTIVE To estimate lifetime economic costs of hospitalization by AIS grade in thoracic SCI. METHODS Using SCI Model Systems data from January 2000 to March 2016 from the National Spinal Cord Injury Statistical Center, we estimated mean total annual days of all-cause hospitalization by AIS grade among persons with thoracic SCI, based on assessments 1, 5, and 10 yr post-injury. We combined this information with secondary cost data and projections of life expectancy to estimate lifetime economic costs of hospitalization by AIS grade in persons aged 35 yr at time of thoracic SCI. Future costs were discounted to present value at 3% annually. RESULTS One year post-injury, mean total annual days of hospitalization ranged from 2.1 for persons with AIS-D injuries to 5.9 for those who were AIS-A. Similar differences were noted 5 and 10 yr post-SCI. The estimated net present value of expected lifetime costs of hospitalization following thoracic SCI at age 35 yr was $321 534, $249 514, $188 989, and $68 120 (2015 US$) for AIS-A, AIS-B, AIS-C, and AIS-D injuries, respectively. CONCLUSION Persons with less severe thoracic SCI, as reflected in AIS grade, spend fewer days in hospital over their lifetimes, leading to lower costs of inpatient care. Therapies improving AIS grade following thoracic SCI may provide cost savings in addition to addressing substantial unmet need.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 928
Author(s):  
Marisa A. Jeffries ◽  
Veronica J. Tom

Individuals with spinal cord injuries (SCI) exhibit increased susceptibility to infection, with pneumonia consistently ranking as a leading cause of death. Despite this statistic, chronic inflammation and concurrent immune suppression have only recently begun to be explored mechanistically. Investigators have now identified numerous changes that occur in the peripheral immune system post-SCI, including splenic atrophy, reduced circulating lymphocytes, and impaired lymphocyte function. These effects stem from maladaptive changes in the spinal cord after injury, including plasticity within the spinal sympathetic reflex circuit that results in exaggerated sympathetic output in response to peripheral stimulation below injury level. Such pathological activity is particularly evident after a severe high-level injury above thoracic spinal cord segment 6, greatly increasing the risk of the development of sympathetic hyperreflexia and subsequent disrupted regulation of lymphoid organs. Encouragingly, studies have presented evidence for promising therapies, such as modulation of neuroimmune activity, to improve regulation of peripheral immune function. In this review, we summarize recent publications examining (1) how various immune functions and populations are affected, (2) mechanisms behind SCI-induced immune dysfunction, and (3) potential interventions to improve SCI individuals’ immunological function to strengthen resistance to potentially deadly infections.


Sign in / Sign up

Export Citation Format

Share Document