Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity

2011 ◽  
Vol 28 (5) ◽  
pp. 451-462 ◽  
Author(s):  
Gordana Radosavljevic ◽  
Ivan Jovanovic ◽  
Ivana Majstorovic ◽  
Maja Mitrovic ◽  
Vanda Juranic Lisnic ◽  
...  
2015 ◽  
Vol 89 (15) ◽  
pp. 7932-7943 ◽  
Author(s):  
Tessa M. Campbell ◽  
Brian P. McSharry ◽  
Megan Steain ◽  
Barry Slobedman ◽  
Allison Abendroth

ABSTRACTNatural killer (NK) cell-deficient patients are particularly susceptible to severe infection with herpesviruses, especially varicella-zoster virus (VZV) and herpes simplex virus 1 (HSV-1). The critical role that NK cells play in controlling these infections denotes an intricate struggle for dominance between virus and NK cell antiviral immunity; however, research in this area has remained surprisingly limited. Our study addressed this absence of knowledge and found that infection with VZV was not associated with enhanced NK cell activation, suggesting that the virus uses specific mechanisms to limit NK cell activity. Analysis of viral regulation of ligands for NKG2D, a potent activating receptor ubiquitously expressed on NK cells, revealed that VZV differentially modulates expression of the NKG2D ligands MICA, ULBP2, and ULBP3 by upregulating MICA expression while reducing ULBP2 and ULBP3 expression on the surface of infected cells. Despite being closely related to VZV, infection with HSV-1 produced a remarkably different effect on NKG2D ligand expression. A significant decrease in MICA, ULBP2, and ULBP3 was observed with HSV-1 infection at a total cellular protein level, as well as on the cell surface. We also demonstrate that HSV-1 differentially regulates expression of an additional NKG2D ligand, ULBP1, by reducing cell surface expression while total protein levels are unchanged. Our findings illustrate both a striking point of difference between two closely related alphaherpesviruses, as well as suggest a powerful capacity for VZV and HSV-1 to evade antiviral NK cell activity through novel modulation of NKG2D ligand expression.IMPORTANCEPatients with deficiencies in NK cell function experience an extreme susceptibility to infection with herpesviruses, in particular, VZV and HSV-1. Despite this striking correlation, research into understanding how these two alphaherpesviruses interact with NK cells is surprisingly limited. Through examination of viral regulation of ligands to the activating NK cell receptor NKG2D, we reveal patterns of modulation by VZV, which were unexpectedly varied in response to regulation by HSV-1 infection. Our study begins to unravel the undoubtedly complex interactions that occur between NK cells and alphaherpesvirus infection by providing novel insights into how VZV and HSV-1 manipulate NKG2D ligand expression to modulate NK cell activity, while also illuminating a distinct variation between two closely related alphaherpesviruses.


1983 ◽  
Vol 55 (2) ◽  
pp. 305-309 ◽  
Author(s):  
Yasuhiro Yoda ◽  
Tsukasa Abe ◽  
Akio Tashiro ◽  
Shinsaku Hirosawa ◽  
Kenichi Kawada ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 557
Author(s):  
Xuewen Deng ◽  
Hiroshi Terunuma ◽  
Mie Nieda

Natural killer (NK) cells are cytotoxic immune cells with an innate capacity for eliminating cancer cells and virus- infected cells. NK cells are critical effector cells in the immunosurveillance of cancer and viral infections. Patients with low NK cell activity or NK cell deficiencies are predisposed to increased risks of cancer and severe viral infections. However, functional alterations of human NK cells are associated with lifestyles and aging. Personal lifestyles, such as cigarette smoking, alcohol consumption, stress, obesity, and aging are correlated with NK cell dysfunction, whereas adequate sleep, moderate exercise, forest bathing, and listening to music are associated with functional healthy NK cells. Therefore, adherence to a healthy lifestyle is essential and will be favorable for immunosurveillance of cancer and viral infections with healthy NK cells.


2020 ◽  
Vol 19 (4) ◽  
pp. 1018-1030 ◽  
Author(s):  
Marco H. Hofmann ◽  
Rajeswaran Mani ◽  
Harald Engelhardt ◽  
Maria A. Impagnatiello ◽  
Sebastian Carotta ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Naveena B. Janakiram ◽  
Altaf Mohammed ◽  
Taylor Bryant ◽  
Yuting Zhang ◽  
Misty Brewer ◽  
...  

2016 ◽  
Vol 2 (7) ◽  
pp. e89 ◽  
Author(s):  
Astrid Tschan-Plessl ◽  
Martin Stern ◽  
Laurent Schmied ◽  
Christelle Retière ◽  
Hans H. Hirsch ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yan Feng ◽  
Yan Li ◽  
Ying Zhang ◽  
Bo-Hao Zhang ◽  
Hui Zhao ◽  
...  

Abstract Background Brain ischemia compromises natural killer (NK) cell-mediated immune defenses by acting on neurogenic and intracellular pathways. Less is known about the posttranscriptional mechanisms that regulate NK cell activation and cytotoxicity after ischemic stroke. Methods Using a NanoString nCounter® miRNA array panel, we explored the microRNA (miRNA) profile of splenic NK cells in mice subjected to middle cerebral artery occlusion. Differential gene expression and function/pathway analysis were applied to investigate the main functions of predicted miRNA target genes. miR-1224 inhibitor/mimics transfection and passive transfer of NK cells were performed to confirm the impact of miR-1224 in NK cells after brain ischemia. Results We observed striking dysregulation of several miRNAs in response to ischemia. Among those miRNAs, miR-1224 markedly increased 3 days after ischemic stroke. Transfection of miR-1224 mimics into NK cells resulted in suppression of NK cell activity, while an miR-1224 inhibitor enhanced NK cell activity and cytotoxicity, especially in the periphery. Passive transfer of NK cells treated with an miR-1224 inhibitor prevented the accumulation of a bacterial burden in the lungs after ischemic stroke, suggesting an enhanced immune defense of NK cells. The transcription factor Sp1, which controls cytokine/chemokine release by NK cells at the transcriptional level, is a predicted target of miR-1224. The inhibitory effect of miR-1224 on NK cell activity was blocked in Sp1 knockout mice. Conclusions These findings indicate that miR-1224 may serve as a negative regulator of NK cell activation in an Sp1-dependent manner; this mechanism may be a novel target to prevent poststroke infection specifically in the periphery and preserve immune defense in the brain.


Sign in / Sign up

Export Citation Format

Share Document