W-Scheduler: whale optimization for task scheduling in cloud computing

2017 ◽  
Vol 22 (S1) ◽  
pp. 1087-1098 ◽  
Author(s):  
Karnam Sreenu ◽  
M. Sreelatha
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Lina Ni ◽  
Xiaoting Sun ◽  
Xincheng Li ◽  
Jinquan Zhang

An important challenge facing cloud computing is how to correctly and effectively handle and serve millions of users’ requests. Efficient task scheduling in cloud computing can intuitively affect the resource configuration and operating cost of the entire system. However, task and resource scheduling in a cloud computing environment is an NP-hard problem. In this paper, we propose a three-layer scheduling model based on whale-Gaussian cloud. In the second layer of the model, a whale optimization strategy based on the Gaussian cloud model (GCWOAS2) is used for multiobjective task scheduling in a cloud computing which is to minimize the completion time of the task via effectively utilizing the virtual machine resources and to keep the load balancing of each virtual machine, reducing the operating cost of the system. In the GCWOAS2 strategy, an opposition-based learning mechanism is first used to initialize the scheduling strategy to generate the optimal scheduling scheme. Then, an adaptive mobility factor is proposed to dynamically expand the search range. The whale optimization algorithm based on the Gaussian cloud model is proposed to enhance the randomness of search. Finally, a multiobjective task scheduling algorithm based on Gaussian whale-cloud optimization (GCWOA) is presented, so that the entire scheduling strategy can not only expand the search range but also jump out of the local maximum and obtain the global optimal scheduling strategy. Experimental results show that compared with other existing metaheuristic algorithms, our strategy can not only shorten the task completion time but also balance the load of virtual machine resources, and at the same time, it also has a better performance in resource utilization.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jafar Ababneh

In the context of cloud computing, one problem that is frequently encountered is task scheduling. This problem has two primary implications, which are the planning of tasks on virtual machines and the attenuation of performance. In order to address the problem of task scheduling in cloud computing, requisite nontraditional optimization attitudes to attain the optima of the problem, the present paper puts forth a hybrid multiple-objective approach called hybrid grey wolf and whale optimization (HGWWO) algorithms, that integrates two algorithms, namely, the grey wolf optimizer (GWO) and the whale optimization algorithm (WOA), with the purpose of conjoining the advantages of each algorithm for minimizing costs, energy consumption, and total execution time needed for task implementation, beside that improving the use of resources. Assessment of the aims of the proposed approach is carried out with the help of the tool known as CloudSim. As pointed out by the results of the experimental work undertaken, the proposed approach has the capability of performing at a superior level by comparison to the original algorithms GWO and WOA on their own with regard to costs, energy consumption, makespan, use of resources, and degree of imbalance.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
LiWei Jia ◽  
Kun Li ◽  
Xiaoming Shi

The efficiency of task scheduling under cloud computing is related to the effectiveness of users. Aiming at the problems of long scheduling time, high cost consumption, and large virtual machine load in cloud computing task scheduling, an improved scheduling efficiency algorithm (called the improved whale optimization algorithm, referred to as IWC) is proposed. Firstly, a cloud computing task scheduling and distribution model with time, cost, and virtual machines as the main factors is constructed. Secondly, a feasible plan for each whale individual corresponding to cloud computing task scheduling is to find the best whale individual, which is the best feasible plan; in order to better find the optimal individual, we use the inertial weight strategy for the whale optimization algorithm to improve the local search ability and effectively prevent the algorithm from reaching premature convergence; we use the add operator and delete operator to screen individuals after each iteration which is completed and updated to improve the quality of understanding. In the simulation experiment, IWC was compared with the ant colony algorithm, particle swarm algorithm, and whale optimization algorithm under a different number of tasks. The results showed that the IWC algorithm has good results in terms of task scheduling time, scheduling cost, and virtual machine. The application is in cloud computing task scheduling.


Cloud computing brings computing resources such as software and hardware, it serve service to the users through a network. Major concept of cloud computing is to share the marvellous storage section. In cloud computing, the user jobs are prepared and executed with appropriate resources to successfully deliver the services. There are large amount of task allocation techniques that are used to accomplish task planning. In order to improve the task scheduling technique, so we proposed method of efficient task scheduling algorithm. Optimization techniques are solving NP-hard problems is very famous. In this proposed technique, user tasks are stored in the order of queue methods. The priority is designed and allocated suitable resources for the task. New tasks are investigated and kept in the on-demand priority of queue. The output of the on-demand queue is given to the MWOA. It has been proved that this algorithm is capable to eliminate optimization problems and outperform the current algorithms. The method is proposed to the required more number of iterations is reduced. The proposed algorithm is compared with various scheduling algorithms such as, genetic algorithm, ant colony, standard grey wolf optimization and particle swarm optimization. The outcomes of tests indicate the better efficiency of the MWOA in expressions of makespan and energy consumption.


Author(s):  
G. Narendrababu Reddy ◽  
S. Phani Kumar

Cloud computing is the advancing technology that aims at providing services to the customers with the available resources in the cloud environment. When the multiple users request service from the cloud server, there is a need of the proper scheduling of the resources to attain good customer satisfaction. Therefore, this paper proposes the Regressive Whale Optimization (RWO) algorithm for workflow scheduling in the cloud computing environment. RWO is the meta-heuristic algorithm, which schedules the task depending on a fitness function. Here, the fitness function is defined based on three major constraints, such as resource utilization, energy, and the Quality of Service (QoS). Therefore, the proposed task scheduling requires minimum time and cost for executing the task in the virtual machines. The performance of the proposed method is analyzed using the four experimental setups, and the results of the analysis prove that the proposed multi-objective task scheduling method performs well than the existing methods. The evaluation metrics considered for analyzing the performance of the proposed workflow scheduling method are resource utilization, energy, cost, and time. Resource utilization is the process of making the most of the resources available for performing tasks. Energy is the quantitative property of the resource to perform tasks. The proposed method attains the maximum resource utilization at a rate of 0.0334, minimal rate of energy, scheduling cost, and time as 0.2291, 0.0181, and 0.0007, respectively.


Author(s):  
Shashikant Raghunathrao Deshmukh ◽  
S. K. Yadav ◽  
D. N. Kyatanvar

In cloud computing, a lot of challenges like the server failures, loss of confidentiality, improper workloads, etc. are still bounding the efficiency of cloud systems in real-world scenarios. For this reason, many research works are being performed to overcome the shortcoming of existing systems. Among them, load balancing seems to be the most critical issue that worsen the performance of the cloud sector, and hence there necessitates the optimal load balancing with optimal task scheduling. With the intention of accomplishing optimal load balancing by effectual task deployment, this paper plans to develop an advanced load balancing model with the assistance acquired from the metaheuristic algorithms. Usually, handling of tasks in cloud system is an NP-hard problem and moreover, nonpreemptive independent tasks are crucial in cloud computing. This paper goes with the introduction of a new optimal load balancing model by considering three major objectives: minimum makespan, priority, and load balancing, respectively. Moreover, a new single-objective function is also defined that incorporates all the three objectives mentioned above. Furthermore, the deployment of tasks must be optimal and for this a new hybrid optimization algorithm referred as Firefly Movement insisted WOA (FM-WOA) is introduced. This FM-WOA is the conceptual amalgamation of standard Whale Optimization Algorithm (WOA) and Firefly (FF) algorithm. Finally, the performances of the proposed FM-WOA model is compared over the conventional models with the intention of proving its efficiency in terms of makespan, task completion (priority), and degree of imbalance as well.


Sign in / Sign up

Export Citation Format

Share Document