scholarly journals On improper interval edge colourings

2016 ◽  
Vol 66 (4) ◽  
pp. 1119-1128
Author(s):  
Peter Hudák ◽  
František Kardoš ◽  
Tomáš Madaras ◽  
Michaela Vrbjarová
Keyword(s):  
2014 ◽  
Vol 24 (4) ◽  
pp. 658-679 ◽  
Author(s):  
JÓZSEF BALOGH ◽  
PING HU ◽  
BERNARD LIDICKÝ ◽  
OLEG PIKHURKO ◽  
BALÁZS UDVARI ◽  
...  

We show that for every sufficiently largen, the number of monotone subsequences of length four in a permutation onnpoints is at least\begin{equation*} \binom{\lfloor{n/3}\rfloor}{4} + \binom{\lfloor{(n+1)/3}\rfloor}{4} + \binom{\lfloor{(n+2)/3}\rfloor}{4}. \end{equation*}Furthermore, we characterize all permutations on [n] that attain this lower bound. The proof uses the flag algebra framework together with some additional stability arguments. This problem is equivalent to some specific type of edge colourings of complete graphs with two colours, where the number of monochromaticK4is minimized. We show that all the extremal colourings must contain monochromaticK4only in one of the two colours. This translates back to permutations, where all the monotone subsequences of length four are all either increasing, or decreasing only.


2013 ◽  
Vol 23 (1) ◽  
pp. 102-115 ◽  
Author(s):  
TEERADEJ KITTIPASSORN ◽  
BHARGAV P. NARAYANAN

Given an edge colouring of a graph with a set of m colours, we say that the graph is exactly m-coloured if each of the colours is used. We consider edge colourings of the complete graph on $\mathbb{N}$ with infinitely many colours and show that either one can find an exactly m-coloured complete subgraph for every natural number m or there exists an infinite subset X ⊂ $\mathbb{N}$ coloured in one of two canonical ways: either the colouring is injective on X or there exists a distinguished vertex v in X such that X\{v} is 1-coloured and each edge between v and X\{v} has a distinct colour (all different to the colour used on X\{v}). This answers a question posed by Stacey and Weidl in 1999. The techniques that we develop also enable us to resolve some further questions about finding exactly m-coloured complete subgraphs in colourings with finitely many colours.


2010 ◽  
Vol 62 (2) ◽  
pp. 355-381 ◽  
Author(s):  
Daniel Král’ ◽  
Edita Máčajov´ ◽  
Attila Pór ◽  
Jean-Sébastien Sereni

AbstractIt is known that a Steiner triple system is projective if and only if it does not contain the four-triple configuration C14. We find three configurations such that a Steiner triple system is affine if and only if it does not contain one of these configurations. Similarly, we characterise Hall triple systems using two forbidden configurations.Our characterisations have several interesting corollaries in the area of edge-colourings of graphs. A cubic graph G is S-edge-colourable for a Steiner triple system S if its edges can be coloured with points of S in such a way that the points assigned to three edges sharing a vertex form a triple in S. Among others, we show that all cubic graphs are S-edge-colourable for every non-projective nonaffine point-transitive Steiner triple system S.


10.37236/5173 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Jakub Przybyło

A locally irregular graph is a graph whose adjacent vertices have distinct degrees. We say that a graph G can be decomposed into k locally irregular subgraphs if its edge set may be partitioned into k subsets each of which induces a locally irregular subgraph in G. It has been conjectured that apart from the family of exceptions which admit no such decompositions, i.e., odd paths, odd cycles and a special class of graphs of maximum degree 3, every connected graph can be decomposed into 3 locally irregular subgraphs. Using a combination of a probabilistic approach and some known theorems on degree constrained subgraphs of a given graph, we prove this to hold for graphs of minimum degree at least $10^{10}$. This problem is strongly related to edge colourings distinguishing neighbours by the pallets of their incident colours and to the 1-2-3 Conjecture. In particular, the contribution of this paper constitutes a strengthening of a result of Addario-Berry, Aldred, Dalal and Reed [J. Combin. Theory Ser. B 94 (2005) 237-244].


COMBINATORICA ◽  
2018 ◽  
Vol 38 (5) ◽  
pp. 1265-1267
Author(s):  
Tamás Fleiner
Keyword(s):  

1981 ◽  
Vol 37 (2-3) ◽  
pp. 289-296 ◽  
Author(s):  
Hian Poh Yap
Keyword(s):  

2015 ◽  
Vol 45 ◽  
pp. 124-131 ◽  
Author(s):  
Rafał Kalinowski ◽  
Monika Pilśniak
Keyword(s):  

2013 ◽  
Vol 22 (5) ◽  
pp. 783-799 ◽  
Author(s):  
GUILLEM PERARNAU ◽  
ORIOL SERRA

A perfect matchingMin an edge-coloured complete bipartite graphKn,nis rainbow if no pair of edges inMhave the same colour. We obtain asymptotic enumeration results for the number of rainbow perfect matchings in terms of the maximum number of occurrences of each colour. We also consider two natural models of random edge-colourings ofKn,nand show that if the number of colours is at leastn, then there is with high probability a rainbow perfect matching. This in particular shows that almost every square matrix of ordernin which every entry appearsntimes has a Latin transversal.


2012 ◽  
Vol 21 (1-2) ◽  
pp. 203-218 ◽  
Author(s):  
CARLOS HOPPEN ◽  
YOSHIHARU KOHAYAKAWA ◽  
HANNO LEFMANN

Let k and ℓ be positive integers. With a graph G, we associate the quantity ck,ℓ(G), the number of k-colourings of the edge set of G with no monochromatic matching of size ℓ. Consider the function ck,ℓ: given by ck,ℓ(n) = max {ck,ℓ(G): |V(G)| = n}, the maximum of ck,ℓ(G) over all graphs G on n vertices. In this paper, we determine ck,ℓ(n) and the corresponding extremal graphs for all large n and all fixed values of k and ℓ.


Sign in / Sign up

Export Citation Format

Share Document