Implementation of a block-decomposition algorithm for solving large-scale conic semidefinite programming problems

2013 ◽  
Vol 57 (1) ◽  
pp. 45-69 ◽  
Author(s):  
Renato D. C. Monteiro ◽  
Camilo Ortiz ◽  
Benar F. Svaiter
Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1257
Author(s):  
Xiaoyong Gao ◽  
Yue Zhao ◽  
Yuhong Wang ◽  
Xin Zuo ◽  
Tao Chen

In this paper, a new Lagrange relaxation based decomposition algorithm for the integrated offshore oil production planning optimization is presented. In our previous study (Gao et al. Computers and Chemical Engineering, 2020, 133, 106674), a multiperiod mixed-integer nonlinear programming (MINLP) model considering both well operation and flow assurance simultaneously had been proposed. However, due to the large-scale nature of the problem, i.e., too many oil wells and long planning time cycle, the optimization problem makes it difficult to get a satisfactory solution in a reasonable time. As an effective method, Lagrange relaxation based decomposition algorithms can provide more compact bounds and thus result in a smaller duality gap. Specifically, Lagrange multiplier is introduced to relax coupling constraints of multi-batch units and thus some moderate scale sub-problems result. Moreover, dual problem is constructed for iteration. As a result, the original integrated large-scale model is decomposed into several single-batch subproblems and solved simultaneously by commercial solvers. Computational results show that the proposed method can reduce the solving time up to 43% or even more. Meanwhile, the planning results are close to those obtained by the original model. Moreover, the larger the problem size, the better the proposed LR algorithm is than the original model.


Author(s):  
Mustafa C. Camur ◽  
Thomas Sharkey ◽  
Chrysafis Vogiatzis

We consider the problem of identifying the induced star with the largest cardinality open neighborhood in a graph. This problem, also known as the star degree centrality (SDC) problem, is shown to be [Formula: see text]-complete. In this work, we first propose a new integer programming (IP) formulation, which has a smaller number of constraints and nonzero coefficients in them than the existing formulation in the literature. We present classes of networks in which the problem is solvable in polynomial time and offer a new proof of [Formula: see text]-completeness that shows the problem remains [Formula: see text]-complete for both bipartite and split graphs. In addition, we propose a decomposition framework that is suitable for both the existing and our formulations. We implement several acceleration techniques in this framework, motivated by techniques used in Benders decomposition. We test our approaches on networks generated based on the Barabási–Albert, Erdös–Rényi, and Watts–Strogatz models. Our decomposition approach outperforms solving the IP formulations in most of the instances in terms of both solution time and quality; this is especially true for larger and denser graphs. We then test the decomposition algorithm on large-scale protein–protein interaction networks, for which SDC is shown to be an important centrality metric. Summary of Contribution: In this study, we first introduce a new integer programming (NIP) formulation for the star degree centrality (SDC) problem in which the goal is to identify the induced star with the largest open neighborhood. We then show that, although the SDC can be efficiently solved in tree graphs, it remains [Formula: see text]-complete in both split and bipartite graphs via a reduction performed from the set cover problem. In addition, we implement a decomposition algorithm motivated by Benders decomposition together with several acceleration techniques to both the NIP formulation and the existing formulation in the literature. Our experimental results indicate that the decomposition implementation on the NIP is the best solution method in terms of both solution time and quality.


2018 ◽  
Vol 63 (4) ◽  
pp. 1045-1058 ◽  
Author(s):  
Sina Khoshfetrat Pakazad ◽  
Anders Hansson ◽  
Martin S. Andersen ◽  
Anders Rantzer

2021 ◽  
Vol I (I) ◽  
Author(s):  
S Lakshmi Narayanan ◽  
Robert Theivadas J

MIMO is a wireless technology that uses large scale antennas to transfer more data at the same time and to increase spectral efficiency. To achieve high data rate with less bandwidth we use decomposition algorithm. Among various de-composition algorithm QR decomposition algorithm outperforms low bit error rate(BER), but the computational complexity is prohibitively high when the system incorporates large number of antennas. This paper presents a low computational sorted QR decomposition (SQRD) algorithm for MIMO.SQRD uses precoding technique at the transmitter which decomposes the channel that can sent in parallel.


2011 ◽  
Vol 1 (3) ◽  
pp. 32-46 ◽  
Author(s):  
Minghuang Li ◽  
Fusheng Yu

Building a linear fitting model for a given interval-valued data set is challenging since the minimization of the residue function leads to a huge combinatorial problem. To overcome such a difficulty, this article proposes a new semidefinite programming-based method for implementing linear fitting to interval-valued data. First, the fitting model is cast to a problem of quadratically constrained quadratic programming (QCQP), and then two formulae are derived to develop the lower bound on the optimal value of the nonconvex QCQP by semidefinite relaxation and Lagrangian relaxation. In many cases, this method can solve the fitting problem by giving the exact optimal solution. Even though the lower bound is not the optimal value, it is still a good approximation of the global optimal solution. Experimental studies on different fitting problems of different scales demonstrate the good performance and stability of our method. Furthermore, the proposed method performs very well in solving relatively large-scale interval-fitting problems.


2006 ◽  
Vol 109 (2-3) ◽  
pp. 207-209
Author(s):  
Erling Andersen ◽  
Etienne de Klerk ◽  
Levent Tunçel ◽  
Henry Wolkowicz ◽  
Shuzhong Zhang

Sign in / Sign up

Export Citation Format

Share Document