Small Area Estimation of Mental Distress Among United States Military Veterans in Illinois

2019 ◽  
Vol 56 (2) ◽  
pp. 298-302
Author(s):  
Justin T. McDaniel ◽  
Minjee Lee ◽  
David L. Albright ◽  
Hee Y. Lee ◽  
Jay Maddock
2018 ◽  
Vol 27 (3) ◽  
pp. 245-253 ◽  
Author(s):  
Zahava Berkowitz ◽  
Xingyou Zhang ◽  
Thomas B. Richards ◽  
Marion Nadel ◽  
Lucy A. Peipins ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Sarah S. Wiener ◽  
Renate Bush ◽  
Amy Nathanson ◽  
Kristen Pelz ◽  
Marin Palmer ◽  
...  

Forest Inventory and Analysis (FIA) data provides robust information for the United States Forest Service’s (USFS) mid-to-broad-scale planning and assessments, but ecological challenges (i.e., climate change, wildfire) necessitate increasingly strategic information without significantly increasing field sampling. Small area estimation (SAE) techniques could provide more precision supported by a rapidly growing suite of landscape-scale datasets. We present three Regional case studies demonstrating current FIA uses, how SAE techniques could enhance existing uses, and steps FIA could take to enable SAE applications that are user-friendly, comprehensive, and statistically appropriate. The Northern Region uses FIA data for planning and assessments, but SAE techniques could provide more specificity to guide vegetation management activities. State and transition simulation models (STSM) are run with FIA data in the Southwestern Region to predict effects of treatments and disturbances, but SAE could support model validation and more precision to identify treatable areas. The Southern Region used FIA to identify existing longleaf pine stands and evaluate condition, but SAE techniques within FIA tools would streamline analyses. Each case study demonstrates a desire to have FIA data on non-forested conditions and non-tree variables. Additional tools to measure statistical confidence would help maximize utility. FIA’s SAE techniques could add value to a widely used data set, if FIA can support key supplements to basic data and functionality.


2021 ◽  
Vol 4 ◽  
Author(s):  
Vance Harris ◽  
Jesse Caputo ◽  
Andrew Finley ◽  
Brett J. Butler ◽  
Forrest Bowlick ◽  
...  

Small area estimation is a powerful modeling technique in which ancillary data can be utilized to “borrow” additional information, effectively increasing sample sizes in small spatial, temporal, or categorical domains. Though more commonly applied to biophysical variables within the study of forest inventory analyses, small area estimation can also be implemented in the context of understanding social values, behaviors, and trends among types of forest landowners within small domains. Here, we demonstrate a method for deriving a continuous fine-scale land cover and ownership layer for the state of Delaware, United States, and an application of that ancillary layer to facilitate small-area estimation of several variables from the USDA Forest Service’s National Woodland Owner Survey. Utilizing a proprietary parcel layer alongside the National Land Cover Database, we constructed a continuous layer with 10-meter resolution depicting land cover and land ownership classes. We found that the National Woodland Owner Survey state-level estimations of total acreage and total ownerships by ownership class were generally within one standard error of the population values calculated from the raster layer, which supported the direct calculation of several population-level summary variables at the county levels. Subsequently, we compare design-based and model-based methods of predicting commercial harvesting by family forest ownerships in Delaware in which forest ownership acreage, taken from the parcel map, was utilized to inform the model-based approach. Results show general agreement between the two modes, indicating that a small area estimation approach can be utilized successfully in this context and shows promise for other variables, especially if additional variables, e.g., United States Census Bureau data, are also incorporated.


2018 ◽  
Vol 28 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Zahava Berkowitz ◽  
Xingyou Zhang ◽  
Thomas B. Richards ◽  
Susan A. Sabatino ◽  
Lucy A. Peipins ◽  
...  

2017 ◽  
Vol 27 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Yu-Hsiu Lin ◽  
Alexander C. McLain ◽  
Janice C. Probst ◽  
Kevin J. Bennett ◽  
Zaina P. Qureshi ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Richard W. Guldin

Small domain estimation (SDE) research outside of the United States has been centered in Canada and Europe—both in transnational organizations, such as the European Union, and in the national statistics offices of individual countries. Support for SDE research is driven by government policy-makers responsible for core national statistics across domains. Examples include demographic information about provision of health care or education (a social domain) or business data for a manufacturing sector (economic domain). Small area estimation (SAE) research on forest statistics has typically studied a subset of core environmental statistics for a limited geographic domain. The statistical design and sampling intensity of national forest inventories (NFIs) provide population estimates of acceptable precision at the national level and sometimes for broad sub-national regions. But forest managers responsible for smaller areas—states/provinces, districts, counties—are facing changing market conditions, such as emerging forest carbon markets, and budgetary pressures that limit local forest inventories. They need better estimates of conditions and trends for small sub-sets of a national-scale domain than can be provided at acceptable levels of precision from NFIs. Small area estimation research is how forest biometricians at the science-policy interface build bridges to inform decisions by forest managers, landowners, and investors.


2018 ◽  
Author(s):  
Minh Cong Nguyen ◽  
Paul Corral ◽  
Joao Pedro Azevedo ◽  
Qinghua Zhao

Sign in / Sign up

Export Citation Format

Share Document