scholarly journals CrashNet: an encoder–decoder architecture to predict crash test outcomes

Author(s):  
Mohamed Karim Belaid ◽  
Maximilian Rabus ◽  
Ralf Krestel

AbstractDestructive car crash tests are an elaborate, time-consuming, and expensive necessity of the automotive development process. Today, finite element method (FEM) simulations are used to reduce costs by simulating car crashes computationally. We propose CrashNet, an encoder–decoder deep neural network architecture that reduces costs further and models specific outcomes of car crashes very accurately. We achieve this by formulating car crash events as time series prediction enriched with a set of scalar features. Traditional sequence-to-sequence models are usually composed of convolutional neural network (CNN) and CNN transpose layers. We propose to concatenate those with an MLP capable of learning how to inject the given scalars into the output time series. In addition, we replace the CNN transpose with 2D CNN transpose layers in order to force the model to process the hidden state of the set of scalars as one time series. The proposed CrashNet model can be trained efficiently and is able to process scalars and time series as input in order to infer the results of crash tests. CrashNet produces results faster and at a lower cost compared to destructive tests and FEM simulations. Moreover, it represents a novel approach in the car safety management domain.

1993 ◽  
Vol 04 (03) ◽  
pp. 247-255 ◽  
Author(s):  
W. HSU ◽  
L. S. HSU ◽  
M. F. TENORIO

This paper describes a novel neural network architecture named ClusNet. This network is designed to study the trade-offs between the simplicity of instance-based methods and the accuracy of the more computational intensive learning methods. The features that make this network different from existing learning algorithms are outlined. A simple proof of convergence of the ClusNet algorithm is given. Experimental results showing the convergence of the algorithm on a specific problem is also presented. In this paper, ClusNet is applied to predict the temporal continuation of the Mackey–Glass chaotic time series. A comparison between the results obtained with ClusNet and other neural network algorithms is made. For example, ClusNet requires one-tenth the computing resources of the instance-based local linear method for this application while achieving comparable accuracy in this task. The sensitivity of ClusNet prediction accuracies on specific clustering algorithms is examined for an application. The simplicity and fast convergence of ClusNet makes it ideal as a rapid prototyping tool for applications where on-line learning is required.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


Author(s):  
Stanisław Jankowski ◽  
Zbigniew Szymański ◽  
Zbigniew Wawrzyniak ◽  
Paweł Cichosz ◽  
Eliza Szczechla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document