Efficacy of various fungicides and indigenous biocontrol agents against red root rot disease of tea plants

2013 ◽  
Vol 137 (1) ◽  
pp. 67-78 ◽  
Author(s):  
K. Manjukarunambika ◽  
P. Ponmurugan ◽  
S. Marimuthu
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alemayehu Dugassa ◽  
Tesfaye Alemu ◽  
Yitbarek Woldehawariat

Abstract Background Faba bean (Vicia faba L.) cultivation is highly challenged by faba bean black root rot disease (Fusarium solani) in high lands of Ethiopia. To ensure sustainable production of faba beans, searching for eco-friendly disease management options is necessary to curb the progress of the disease timely. The indigenous biocontrol agents that suit local environments may effectively strive with in-situ microorganisms and suppress local pathogen strains. This study aimed to screen antagonistic indigenous compatible Trichoderma and Pseudomonas strains against Fusarium solani. In the pathogenicity test, soil-filled pots were arranged in complete random block design and sown with health faba bean seeds. The effect of some fungicides was evaluated against Fusarium by food poisoning methods to compare with the biocontrol agents. The antagonistic efficacy of biocontrol agents and their compatibility was investigated on Potato dextrose agar medium. Results Fusarium solani AAUF51 strain caused an intense root rotting in faba bean plant. The effect of Mancozeb 80% WP at 300 ppm was comparable with Trichoderma and Pseudomonas strains against Fusarium. The mycelial growth of test the pathogen was significantly (P ≤ 0.05) reduced to 86.67 and 85.19% by Trichoderma harzianum AAUW1 and Trichoderma viridae AAUC22 strains in dual culture, respectively. The volatile metabolites of Pseudomonas aeruginosa AAUS31 (77.78%) found the most efficient in reducing mycelial growth of Fusarium followed by Pseudomonas fluorescens AAUPF62 (71.11%) strains. The cell-free culture filtrates of Pseudomonas fluorescens AAUPF62 and Pseudomonas aeruginosa AAUS31 were more efficient than the Trichoderma strain in reducing the growth of Fusarium isolates. There was no zone of inhibition recorded between Trichoderma harzianum AAUW1, Trichoderma viridae AAUC22, Pseudomonas aeruginosa AAUS31, and Pseudomonas fluorescens AAUPF62 strains, hence they were mutually compatible. Conclusions The compatible Trichoderma and Pseudomonas strains showed antagonistic potentiality that could be explored for faba bean protection against black root rot disease and might have a future dual application as biocontrol agents.


2015 ◽  
Vol 89 ◽  
pp. 75-83 ◽  
Author(s):  
Viswanathan Elango ◽  
Kolandasamy Manjukarunambika ◽  
Ponnusamy Ponmurugan ◽  
Subbagoundar Marimuthu

2016 ◽  
Vol 11 (13) ◽  
pp. 1019-1031 ◽  
Author(s):  
Ponnusamy Ponmurugan ◽  
Kolandasamy Manjukarunambika ◽  
Viswanathan Elango ◽  
Balasubramanian Mythili Gnanamangai

2016 ◽  
Vol 8 (1) ◽  
pp. 305-309
Author(s):  
R. P. S. Jetawat ◽  
K. Mathur

The experiment was conducted to study fungicides, biocontrol agents and botanicals for management of ashwagandha root rot disease. Ashwagandha root rot disease caused by two pathogen Fusarium solani and Rhizoctonia solani. In field trial, seed treatments with integration of fungicides, neem cake manure, neem oil and Trichoderma viride agent evaluated as seed treatments individually as well as in different combination of seed treatment and soil application of neem cake was found effective integrated treatment (ST SAAF + neem cake manure + T. viride) and soil application of neem cake manure@500g/plot showed minimum per cent root rot and maximum per cent germination and maximum yield of Ashwagandha as compared to their individual applications over the untreated control.


Author(s):  
Karthik Natesan ◽  
Ponnusamy Ponmurugan ◽  
Balasubramanian Mythili Gnanamangai ◽  
Venkatesan Manigandan ◽  
Sebastian Prakash Joseph Joy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document