Identification of source of faecal pollution of Tirumanimuttar River, Tamilnadu, India using microbial source tracking

2011 ◽  
Vol 184 (10) ◽  
pp. 6001-6012 ◽  
Author(s):  
Kasi Murugan ◽  
Perumal Prabhakaran ◽  
Saleh Al-Sohaibani ◽  
Kuppusamy Sekar
2010 ◽  
Vol 62 (3) ◽  
pp. 586-593 ◽  
Author(s):  
P. Roslev ◽  
A. S. Bukh ◽  
L. Iversen ◽  
H. Sønderbo ◽  
N. Iversen

Sources of faecal pollution in coastal recreational waters may be identified by analysing different host associated microorganisms or molecular markers. However, the microbial targets are often present at low numbers in moderately impacted waters, and often exhibit significant temporal and spatial variability in waters with fluctuating faecal loads. This patchy occurrence can limit successful detection of relevant targets in microbial source tracking studies. In this study, we explored the possibility for using the blue mussel (Mytilus edulis) as a biosampler for accumulation of faecal bacteria relevant for microbial source tracking. Non-contaminated blue mussels were transferred to three coastal recreational waters affected by faecal pollution of unknown origin. Molecular markers associated with animal and human waste were targeted by PCR and compared in seawater and mussel samples. The results demonstrated that transplanted mussels in simple enclosures accumulated and retained elevated levels of molecular markers associated with different types of faecal pollution. The targets included a novel putative human associated E. coli subgroup B2 VIII clone, and animal and human associated markers in enterococci (esp, M19, M66, M90, and M91). Human (sewage) associated markers including esp and M66 were sometimes not detectable in seawater samples despite known wastewater contamination, whereas the markers were detectable in mussels. We suggest that transplanted mussels should be considered as potential biosamplers in studies focusing on identifying source of faecal pollution in low or moderately impacted recreational waters. Bioaccumulation of molecular markers in mussels for several days may represent the water quality better than traditional grab samples from the water column.


2010 ◽  
Vol 62 (3) ◽  
pp. 719-727 ◽  
Author(s):  
T. A. Edge ◽  
S. Hill ◽  
P. Seto ◽  
J. Marsalek

Multiple microbial source tracking methods were applied to investigate spatial variation in faecal pollution sources impacting a 1.7 km freshwater beach on Lake Ontario (Canada). The highest E. coli concentrations measured in the study area were from interstitial sand pore water at Sunnyside Beach, reaching 2.6 × 106 CFU/100 ml. These E. coli concentrations exceeded those in the nearby Humber River and Black Creek, which are impacted by combined sewer overflows containing municipal wastewater and by stormwater conveying washoff from the urban area. Library-independent Bacteroidales HF183 analyses identified the more frequent occurrence of municipal wastewater contamination in the Humber River and at a Sunnyside Beach location closest to the mouth of the river. Library-dependent E. coli antibiotic resistance and rep-PCR DNA fingerprinting analyses identified the more frequent occurrence of bird faecal contamination at Sunnyside Beach locations away from the river mouth. These microbial source tracking results raise caution about managing beaches with multiple sources of contamination as a single entity without considering spatial variability in faecal pollution sources and the need for more localized beach management practices.


2021 ◽  
Vol 232 (2) ◽  
Author(s):  
Meriane Demoliner ◽  
Juliana Schons Gularte ◽  
Viviane Girardi ◽  
Ana Karolina Antunes Eisen ◽  
Fernanda Gil de Souza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document