Application of mussels as biosamplers for characterization of faecal pollution in coastal recreational waters

2010 ◽  
Vol 62 (3) ◽  
pp. 586-593 ◽  
Author(s):  
P. Roslev ◽  
A. S. Bukh ◽  
L. Iversen ◽  
H. Sønderbo ◽  
N. Iversen

Sources of faecal pollution in coastal recreational waters may be identified by analysing different host associated microorganisms or molecular markers. However, the microbial targets are often present at low numbers in moderately impacted waters, and often exhibit significant temporal and spatial variability in waters with fluctuating faecal loads. This patchy occurrence can limit successful detection of relevant targets in microbial source tracking studies. In this study, we explored the possibility for using the blue mussel (Mytilus edulis) as a biosampler for accumulation of faecal bacteria relevant for microbial source tracking. Non-contaminated blue mussels were transferred to three coastal recreational waters affected by faecal pollution of unknown origin. Molecular markers associated with animal and human waste were targeted by PCR and compared in seawater and mussel samples. The results demonstrated that transplanted mussels in simple enclosures accumulated and retained elevated levels of molecular markers associated with different types of faecal pollution. The targets included a novel putative human associated E. coli subgroup B2 VIII clone, and animal and human associated markers in enterococci (esp, M19, M66, M90, and M91). Human (sewage) associated markers including esp and M66 were sometimes not detectable in seawater samples despite known wastewater contamination, whereas the markers were detectable in mussels. We suggest that transplanted mussels should be considered as potential biosamplers in studies focusing on identifying source of faecal pollution in low or moderately impacted recreational waters. Bioaccumulation of molecular markers in mussels for several days may represent the water quality better than traditional grab samples from the water column.

2011 ◽  
Vol 184 (10) ◽  
pp. 6001-6012 ◽  
Author(s):  
Kasi Murugan ◽  
Perumal Prabhakaran ◽  
Saleh Al-Sohaibani ◽  
Kuppusamy Sekar

2018 ◽  
Vol 84 (17) ◽  
Author(s):  
Derek Rothenheber ◽  
Stephen Jones

ABSTRACTFecal pollution at coastal beaches requires management efforts to address public health and economic concerns. Feces-borne bacterial concentrations are influenced by different fecal sources, environmental conditions, and ecosystem reservoirs, making their public health significance convoluted. In this study, we sought to delineate the influences of these factors on enterococcal concentrations in southern Maine coastal recreational waters. Weekly water samples and water quality measurements were conducted at freshwater, estuarine, and marine beach sites from June through September 2016. The samples were analyzed for total and particle-associated enterococcal concentrations, total suspended solids, and microbial source tracking markers (PCR: Bac32, HF183, CF128, DF475, and Gull2; quantitative PCR [qPCR]: AllBac, HF183, and GFD). Water, soil, sediment, and marine sediment samples were also subjected to 16S rRNA sequencing and SourceTracker analysis to determine the influence from these environmental reservoirs on water sample microbial communities. Enterococcal and particle-associated enterococcal concentrations were elevated in freshwater, but the concentrations of suspended solids were relatively similar. Mammal fecal contamination was significantly elevated in the estuary, with human and bird fecal contaminant levels similar between sites. A partial least-squares regression model indicated particle-associated enterococcal and mammal marker concentrations had the most significant positive relationships with enterococcal concentrations across marine, estuary, and freshwater environments. Freshwater microbial communities were significantly influenced by underlying sediment, while estuarine/marine beach communities were influenced by freshwater, high tide height, and estuarine sediment. Elevated enterococcal levels were reflective of a combination of increased fecal source input, environmental sources, and environmental conditions, highlighting the need for encompassing microbial source tracking (MST) approaches for managing water quality issues.IMPORTANCEEnterococci have long been the federal standard in determining water quality at estuarine and marine environments. Although enterococci are highly abundant in the intestines of many animals, they are not exclusive to that environment and can persist and grow outside fecal tracts. This presents a management problem for areas that are largely impaired by nonpoint source contamination, as fecal sources might not be the root cause of contamination. This study employed different microbial source tracking methods for delineating the influences from fecal source input, environmental sources, and environmental conditions to determine which combination of variables are influencing enterococcal concentrations in recreational waters at a historically impaired coastal town. The results showed that fecal source input, environmental sources, and conditions all play roles in influencing enterococcal concentrations. This highlights the need to include an encompassing microbial source tracking approach to assess the effects of all important variables on enterococcal concentrations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hongxia Liang ◽  
Zhisheng Yu ◽  
Bobo Wang ◽  
Fabrice Ndayisenga ◽  
Ruyin Liu ◽  
...  

It is important to track fecal sources from humans and animals that negatively influence the water quality of rural rivers and human health. In this study, microbial source tracking (MST) methods using molecular markers and the community-based FEAST (fast expectation–maximization microbial source tracking) program were synergistically applied to distinguish the fecal contributions of multiple sources in a rural river located in Beijing, China. The performance of eight markers were evaluated using 133 fecal samples based on real-time quantitative (qPCR) technique. Among them, six markers, including universal (BacUni), human-associated (HF183-1 and BacH), swine-associated (Pig-2-Bac), ruminant-associated (Rum-2-Bac), and avian-associated (AV4143) markers, performed well in the study. A total of 96 water samples from the river and outfalls showed a coordinated composition of fecal pollution, which revealed that outfall water might be a potential input of the Fsq River. In the FEAST program, bacterial 16S rRNA genes of 58 fecal and 12 water samples were sequenced to build the “source” library and “sink,” respectively. The relative contribution (<4.01% of sequence reads) of each source (i.e., human, swine, bovine, or sheep) was calculated based on simultaneous screening of the operational taxonomic units (OTUs) of sources and sinks, which indicated that community-based MST methods could be promising tools for identifying fecal sources from a more comprehensive perspective. Results of the qPCR assays indicated that fecal contamination from human was dominant during dry weather and that fecal sources from swine and ruminant were more prevalent in samples during the wet season than in those during the dry season, which were consistent with the findings predicted by the FEAST program using a very small sample size. Information from the study could be valuable for the development of improved regulation policies to reduce the levels of fecal contamination in rural rivers.


2007 ◽  
Vol 5 (4) ◽  
pp. 503-509 ◽  
Author(s):  
Brian J. Robinson ◽  
Kerry J. Ritter ◽  
R. D. Ellender

Library-based microbial source tracking (MST) can assist in reducing or eliminating fecal pollution in waters by predicting sources of fecal-associated bacteria. Library-based MST relies on an assembly of genetic or phenotypic “fingerprints” from pollution-indicative bacteria cultivated from known sources to compare with and identify fingerprints of unknown origin. The success of the library-based approach depends on how well each source candidate is represented in the library and which statistical algorithm or matching criterion is used to match unknowns. Because known source libraries are often built based on convenience or cost, some library sources may contain more representation than others. Depending on the statistical algorithm or matching criteria, predictions may become severely biased toward classifying unknowns into the library's dominant source category. We examined prediction bias for four of the most commonly used statistical matching algorithms in library-based MST when applied to disproportionately-represented known source libraries; maximum similarity (MS), average similarity (AS), discriminant analyses (DA), and k-means nearest neighbor (k-NN). MS was particularly sensitive to disproportionate source representation. AS and DA were more robust. k-NN provided a compromise between correct prediction and sensitivity to disproportional libraries including increased matching success and stability that should be considered when matching to disproportionally-represented libraries.


2009 ◽  
Vol 75 (22) ◽  
pp. 7107-7114 ◽  
Author(s):  
Jung Eun Lee ◽  
Mi Young Lim ◽  
Sei Yoon Kim ◽  
Sunghee Lee ◽  
Heetae Lee ◽  
...  

ABSTRACT We investigated coliphages from various fecal sources, including humans and animals, for microbial source tracking in South Korea. Both somatic and F+-specific coliphages were isolated from 43 fecal samples from farms, wild animal habitats, and human wastewater plants. Somatic coliphages were more prevalent and abundant than F+ coliphages in all of the tested fecal samples. We further characterized 311 F+ coliphage isolates using RNase sensitivity assays, PCR and reverse transcription-PCR, and nucleic acid sequencing. Phylogenetic analyses were performed based on the partial nucleic acid sequences of 311 F+ coliphages from various sources. F+ RNA coliphages were most prevalent among geese (95%) and were least prevalent in cows (5%). Among the genogroups of F+ RNA coliphages, most F+ coliphages isolated from animal fecal sources belonged to either group I or group IV, and most from human wastewater sources were in group II or III. Some of the group I coliphages were present in both human and animal source samples. F+ RNA coliphages isolated from various sources were divided into two main clusters. All F+ RNA coliphages isolated from human wastewater were grouped with Qβ-like phages, while phages isolated from most animal sources were grouped with MS2-like phages. UniFrac significance statistical analyses revealed significant differences between human and animal bacteriophages. In the principal coordinate analysis (PCoA), F+ RNA coliphages isolated from human waste were distinctively separate from those isolated from other animal sources. However, F+ DNA coliphages were not significantly different or separate in the PCoA. These results demonstrate that proper analysis of F+ RNA coliphages can effectively distinguish fecal sources.


2018 ◽  
Author(s):  
Derek Rothenheber ◽  
Stephen Jones

ABSTRACTFecal pollution at coastal beaches in the Northeast, USA requires management efforts to address public health and economic concerns. Concentrations of fecal-borne bacteria are influenced by different fecal sources, environmental conditions, and ecosystem reservoirs, making their public health significance convoluted. In this study, we sought to delineate the influences of these factors on enterococci concentrations in southern Maine coastal recreational waters. Weekly water samples and water quality measurements were conducted at freshwater, estuarine, and marine beach sites from June through September 2016. Samples were analyzed for total and particle-associated enterococci concentrations, total suspended solids, and microbial source tracking markers for multiple sources. Water, soil, sediment, and marine sediment samples were also subjected to 16S rRNA sequencing and SourceTracker analysis to determine the influence from these environmental reservoirs on water sample microbial communities. Enterococci and particle-associated enterococci concentrations were elevated in freshwater, but suspended solids concentrations were relatively similar. Mammal fecal contamination was significantly elevated in the estuary, with human and bird fecal contaminant levels similar between sites. A partial least squares regression model indicated particle-associated enterococci and mammal marker concentrations had the most significant positive relationships with enterococci concentrations across marine, estuary, and freshwater environments. Freshwater microbial communities were significantly influenced by underlying sediment while estuarine/marine beach communities were influenced by freshwater, high tide height, and estuarine sediment. We found elevated enterococci levels are reflective of a combination of increased fecal source input, environmental sources, and environmental conditions, highlighting the need for encompassing MST approaches for managing water quality issues.IMPORTANCEEnterococci have long been the federal standard in determining water quality at estuarine and marine environments. Although enterococci are highly abundant in the fecal tracts of many animals they are not exclusive to that environment and can persist and grow outside of fecal tracts. This presents a management problem for areas that are largely impaired by non-point source contamination, as fecal sources might not be the root cause of contamination. This study employed different microbial source tracking methods to delineate influences from fecal source input, environmental sources, and environmental conditions to determine which combination of variables are influencing enterococci concentrations in recreational waters at a historically impaired coastal town. Results showed that fecal source input, environmental sources and conditions all play a role in influencing enterococci concentrations. This highlights the need to include an encompassing microbial source tracking approach to assess the effects of all important variables on enterococci concentrations.


2009 ◽  
Vol 55 (3) ◽  
pp. 269-276 ◽  
Author(s):  
Tanya Kon ◽  
Susan C. Weir ◽  
E. Todd Howell ◽  
Hung Lee ◽  
Jack T. Trevors

Repetitive element-polymerase chain reaction (REP-PCR) DNA fingerprinting and library-based microbial source tracking (MST) methods were utilized to investigate the potential sources of Escherichia coli pollution in recreational waters of southeastern Lake Huron. In addition to traditional sources such as humans, agriculture, and wildlife, environmentally persistent E. coli isolates were included in the identification library as a separate library unit consisting of the E. coli strains isolated from interstitial water on the beach itself. Our results demonstrated that the dominant source of E. coli pollution of the lake was agriculture, followed by environmentally adapted E. coli strains, wildlife, and then humans. A similar ratio of contributing sources was observed in all samples collected from various locations including the river discharging to the beach in both 2005 and 2006. The high similarity between the compositions of E. coli communities collected simultaneously in the river and in the lake suggests that tributaries were the major overall sources of E. coli to the lake. Our findings also suggest that environmentally adapted strains (EAS) of E. coli should be included as one of the potential sources in future microbial source tracking efforts.


Sign in / Sign up

Export Citation Format

Share Document