Impact of land use/land cover dynamics on ecosystem service value—a case from Lake Malombe, Southern Malawi

2021 ◽  
Vol 193 (8) ◽  
Author(s):  
Rodgers Makwinja ◽  
Emmanuel Kaunda ◽  
Seyoum Mengistou ◽  
Tena Alamirew
2019 ◽  
Author(s):  
Jiangyue Li ◽  
Hongxing Chen ◽  
Chi Zhang ◽  
Tao Pan

Acute farmland expansion and rapid urbanization in Central Asia have accelerated land use/land cover changes, which has significant effect onecosystemservice. However, the spatio-temporal changes in ecosystem service values in Central Asia are not well understood. Here, based on land use products with 300-m resolution for the years of 1995, 2005 and 2015 and transfer methodology, we predicted LUCC for 2025 and 2035 using CA-Markov, assessed changes in ecosystem service value in response to LUCC dynamics, and explored the elasticity for the response of ESV to LULC changes. We found significant expansions of cropland and urban and shrinking of water bodies and bare land during 1995-2035. Overall ESVs had an increasing trend from 1995-2035, which was mainly due to the increasing cropland and construction land. The combined valueofecosystemservices of cropland, grassland, water bodies accounted for over 90% of the total ESVs. However, LULC analysis showed that the area of water body reduced by 21.80% from 1995 to 2015 and continued to decrease by 21.14% from 2015 to 2035, indicating that approximately 63.37 billion US$ of ESVs lost in Central Asia. Biodiversity, food production and water regulation were major service functions, accounting for 80.52% of the total ESVs . Our results demonstrated that theeffective land-usepolicies should be made to control farmland expansion and protect water bodies, grassland and forestland for better sustainable ecosystem services.


2019 ◽  
Author(s):  
Jiangyue Li ◽  
Hongxing Chen ◽  
Chi Zhang ◽  
Tao Pan

Acute farmland expansion and rapid urbanization in Central Asia have accelerated land use/land cover changes, which has significant effect onecosystemservice. However, the spatio-temporal changes in ecosystem service values in Central Asia are not well understood. Here, based on land use products with 300-m resolution for the years of 1995, 2005 and 2015 and transfer methodology, we predicted LUCC for 2025 and 2035 using CA-Markov, assessed changes in ecosystem service value in response to LUCC dynamics, and explored the elasticity for the response of ESV to LULC changes. We found significant expansions of cropland and urban and shrinking of water bodies and bare land during 1995-2035. Overall ESVs had an increasing trend from 1995-2035, which was mainly due to the increasing cropland and construction land. The combined valueofecosystemservices of cropland, grassland, water bodies accounted for over 90% of the total ESVs. However, LULC analysis showed that the area of water body reduced by 21.80% from 1995 to 2015 and continued to decrease by 21.14% from 2015 to 2035, indicating that approximately 63.37 billion US$ of ESVs lost in Central Asia. Biodiversity, food production and water regulation were major service functions, accounting for 80.52% of the total ESVs . Our results demonstrated that theeffective land-usepolicies should be made to control farmland expansion and protect water bodies, grassland and forestland for better sustainable ecosystem services.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi He ◽  
Wenhui Wang ◽  
Youdong Chen ◽  
Haowen Yan

AbstractIncreasing human activity around the world has greatly changed the natural ecosystem and the services it provides. In the past few decades, a series of significant changes have taken place in land use/land cover (LULC) in China due to the rapid growth in population, particularly in the cities of the Zhujiang Deita. However, there have been few attempts to study the co-evolution of land use/land cover change and ecosystem service value (ESV) in the main urban area of Guangzhou. Therefore, based on Landsat TM/OLI images from 1987, 1993, 1999, 2005, 2011 and 2017, the weight vector AdaBoost (WV AdaBoost) multi-classification algorithm was utilized to extract LULC data sets, and the spatiotemporal patterns of LULC over these periods were studied. The ESV was estimated and the driving force was analysed. The effect of LULC dynamics on the ESV was evaluated. The results showed that great changes have taken place in LULC in the main urban area of Guangzhou from 1987 to 2017, of which the most significant was the large-scale expansion of the built-up area that occurred through degradation of the forest and cultivated land. The proportion of forest and cultivated land decreased from 43.12% and 34.23% to 25.88% and 12.59%, respectively. The results between periods revealed a decrease in total ESVs from 5.63 × 109 yuan in 1987 to 5.27, 4.16, 4.62, 3.76 and 4.47 × 109 yuan in 1993, 1999, 2005, 2011 and 2017, respectively. In total, ESVs decreased by 1.16 billion yuan (20.61%) from 1987 to 2017. Water supply, food production, nutrient cycling and gas regulation were the four principal ecosystem service functions that affected the total ESVs. Forest, water body and cultivated land areas played a key role in ecosystem services. Therefore, we advocate that when protecting natural ecosystems in the future land use management in Guangzhou should be prioritized.


Author(s):  
Negasi Solomon ◽  
Alcade C. Segnon ◽  
Emiru Birhane

Despite their importance as sources of ecosystem services supporting the livelihoods of millions of people, forest ecosystems have been changing into other land use systems over the past decades across the world. While forest cover change dynamics have been widely documented in various ecological systems, how these changes affect ecosystem service values has received limited attention. In this study we assessed the impact of land-use/land-cover dynamics on ecosystem service values in dry Afromontane forest in Northern Ethiopia. We estimated ecosystem service values and their changes based on the benefit transfer method using land cover data of the years 1985, 2000, and 2016 with their corresponding locally valid value coefficients and from the Ecosystem service valuation database. The total ecosystem service values of the whole study area were about USD 16.6, 19.0, and 18.1 million in 1985, 2000, and 2016, respectively. The analyses indicated an increase in ecosystem service values from 1985 to 2000 and a decrease in ecosystem service values from 2000 to 2016. Similarly, the contribution of specific ecosystem services increased in the first study period and decreased in the second study period. The findings highlight how forest cover dynamics can be translated into changes in ecosystem service values in dry Afromontane forest ecosystems in Northern Ethiopia and showed how specific ecosystem services contributed to the observed trends. The findings also illustrated the temporal heterogeneity in the impacts of land-use/land-cover dynamics on values of ecosystem services. The findings can serve as crucial inputs for policy and strategy formulations for the sustainable use and management of forest resources and can also guide the allocation of limited resources among competing demands to safeguard the ecosystems that offer the best-valued services.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1317
Author(s):  
Athiwat Phinyoyang ◽  
Suwit Ongsomwang

Floods represent one of the most severe natural disasters threatening the development of human society worldwide, including in Thailand. In recent decades, Chaiyaphum province has experienced a problem with flooding almost every year. In particular, the flood in 2010 caused property damage of 495 million Baht, more than 322,000 persons were affected, and approximately 1046.4 km2 of productive agricultural area was affected. Therefore, this study examined how to optimize land use and land cover allocation for flood mitigation using land use change and hydrological models with optimization methods. This research aimed to allocate land use and land cover (LULC) to minimize the surface for flood mitigation in Mueang Chaiyaphum district, Chaiyaphum province, Thailand. The research methodology consisted of six stages: data collection and preparation, LULC classification, LULC prediction, surface runoff estimation, the optimization of LULC allocation for flood mitigation and mapping, and economic and ecosystem service value evaluation and change. According to the results of the optimization and mapping of suitable LULC allocation to minimize surface runoff for flood mitigation in dry, normal, and wet years using goal programming and the CLUE-S model, the suitable LULC allocation for flood mitigation in 2049 under a normal year could provide the highest future economic value and gain. In the meantime, the suitable LULC allocation for flood mitigation in 2049 under a drought year could provide the highest ecosystem service value and gain. Nevertheless, considering future economic and ecosystem service values and changes with surface runoff reduction, the most suitable LULC allocation for flood mitigation is a normal year. Consequently, it can be concluded that the derived results of this study can be used as primary information for flood mitigation project implementation. Additionally, the presented conceptual framework and research workflows can be used as a guideline for government agencies to examine other flood-prone areas for flood mitigation in Thailand.


Land ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 37 ◽  
Author(s):  
Ashebir Woldeyohannes ◽  
Marc Cotter ◽  
Wubneshe Biru ◽  
Girma Kelboro

This study evaluated the effect of Land Use and Land Cover (LULC) dynamics on the value of ecosystem services in Abaya-Chamo basin over 1985–2050. The main objectives of the study were to estimate the value of ecosystem services of Abaya-Chamo basin using local and global ecosystem service value coefficients, assess how it changes over time, and develop tools to inform policy and public decision-making to protect lands and waters in the region. The study utilized observed (1985 and 2010) and predicted (2030 and 2050) LULC datasets and ecosystem service value coefficients obtained from publications in peer-reviewed scientific journals. The results indicated that the total ecosystem service value of Abaya-Chamo basin was 12.13 billion USD in 1985 and 12.45 billion USD in 2010. The value is predicted to increase to 12.47 billion USD by the year 2050, which is 2.84% (344.5 million USD) higher than the total value of ecosystem services of the basin in 1985. Although the total ecosystem service value of the basin showed a slight increase over the study period, it was observed that the total value of services obtained from natural ecosystems is expected to decline by 36.24% between 1985 and 2050. The losses of services obtained from natural ecosystems, such as water regulation and erosion control, are major concern as the consequence has already been reported in the basin in the form of reduced water quality and productivity of the lakes due to an increased soil erosion and sediment transport in the basin. Therefore, special attention should be given to the rehabilitation of degraded ecosystems and the protection of remaining natural vegetation and water bodies to enhance natural capital and ecosystem services in the basin. A large-scale dissemination of eco-agricultural land use practices, which provide multiple ecosystem services (such as agroforestry and heterogeneous agricultural areas) in the basin, needs to be considered in the future.


Sign in / Sign up

Export Citation Format

Share Document