A Retardation Factor Considering Solute Transfer Between Mobile and Immobile Water in Porous Media

Author(s):  
Nobuyuki Egusa ◽  
Kei Nakagawa ◽  
Tatemasa Hirata
Author(s):  
Xiaohua Huang ◽  
Guodong Liu ◽  
Jie Mei

Deuterated water has been applied in hydrogeological tracer tests in recent years. However, there is a contradiction about the conservativeness of artificial deuterium (D/2H). In this study, what circumstances HDO behaved truly conservatively were investigated through laboratory-scale experiments via comparing the widely used tracer chloride (Cl-). And reasons for the non-conservativeness of HDO were discussed comprehensively for the first time. In addition, the advection-dispersion equation (ADE) and dual-domain mass transfer (DDMT) equation were employed to describe the breakthrough curves (BTCs) of tracers. HDO behaved conservatively when it transported in the porous media with high permeability (approximately K > 1m/d), and ADE could describe BTCs successfully. While hysteresis effect of HDO expressed in the media with low permeability. And the lower the permeability of the porous media, the stronger the hysteresis effect. DDMT was more suitable for demonstrating BTCs in low permeability media. Hydrogen bonds between HDO and H2O, the isotopic exchange effect, and the dual-domain model of the media all could lead to the hysteresis effect. The retardation factor (R = 1.712) was used to describe transporting behaviors of HDO in clay firstly. And the threshold hydraulic conductivity (Kcr) and the proportion of immobile regions of HDO were greater than that of Cl-, while dispersion coefficients of HDO were smaller. These could provide further considerations for using deuterium in hydrogeological tracer tests.


Soil Research ◽  
2000 ◽  
Vol 38 (6) ◽  
pp. 1131 ◽  
Author(s):  
A. E. A. Okom ◽  
R. E. White ◽  
L. K. Heng

For the purpose of modeling solute transport, soil water has often been simply divided into an essentially mobile fraction, q m , which is active in solute transport, and an apparently immobile fraction, q im . Distinction between q m and q im was sought using the disc permeameter technique. This study examines unsaturated estimates of mobile water content at suction heads, h, of 20, 40, 80, and 120 mm for several soils ranging in texture from sand to clay. Following infiltration of 35 mm depth of 0.01 M KBr into initially dry soils, soil samples were collected from below the base of the disc permeameter and analysed for tracer concentrations which enabled partitioning of mobile and immobile water. Hydraulic conductivity and sorptivity were also derived from the infiltration data. The results show the expected non-linearity of hydraulic conductivity and sorptivity with suction. The mobile water expressed as a fraction, f, of the volumetric water content q (f = q m / q ) was generally found to range from 0.7 to 0.95, with an average of 0.85. The exception was one site for which f was ª 0.50. These values of f are comparable to those derived from leaching studies reported in the literature. An important finding of this work is that within the range of suctions measured, the mobile fraction was independent of suction. A possible explanation for this observation is that the soil capillary forces were dominant during the time scale of the experiment and therefore rapidly drew the invading solution. This finding could have important implications for fertiliser application. Furthermore, this result suggests that the assumption of a negligible solute transfer coefficient, a , between the mobile and immobile domains may be valid within the time scale of this method of measuring the mobile water content.


1997 ◽  
Vol 341 ◽  
pp. 385-413 ◽  
Author(s):  
CHIU-ON NG ◽  
CHIANG C. MEI

We describe a theory for the removal of volatile organic chemicals from an unsaturated soil stratum consisting of highly porous coarse sand layers sandwiching a thin and semipervious lens. Each soil layer is modelled as a periodic array of spherical aggregates formed by solid grains and immobile water trapped by surface tension. Volatile chemicals are vaporized in the mobile air in pores between aggregates, dissolved in the intra-aggregate water, and adsorbed on the surface of soil grains. Using the effective transport equations derived for the aggregated soils, we consider shallow layers with sharp contrast in physical properties. An asymptotic analysis is developed for an axisymmetric geometry, yielding quasi-one-dimensional governing equations for individual layers. At the leading order the flow and the vapour transport are horizontal in the coarse layers but vertical in the semipervious lens. Numerical results are presented for a simple example to demonstrate the significance of the lens permeability, diffusivity and retardation factor, and the aggregate diffusivity in the coarse layers, on the vapour transport during the stages of contamination and air-venting.


1990 ◽  
Vol 26 (3) ◽  
pp. 437-446 ◽  
Author(s):  
Constantinos V. Chrysikopoulos ◽  
Peter K. Kitanidis ◽  
Paul V. Roberts

1979 ◽  
Vol 41 (1-2) ◽  
pp. 59-67 ◽  
Author(s):  
F. De Smedt ◽  
P.J. Wierenga

Sign in / Sign up

Export Citation Format

Share Document